【题目】星期天8:00~8:30,燃气公司给平安加气站的储气罐注入天然气.之后,一位工作人员以每车20立方米的加气量,依次给在加气站排队等候的若干辆车加气.储气罐中的储气量y(立方米)与时间x(小时)的函数关系如图所示.
(1)8:00~8:30,燃气公司向储气罐注入了多少立方米的天然气;
(2)当x≥0.5时,求储气罐中的储气量y(立方米)与时间x(小时)的函数解析式;
(3)请你判断,正在排队等候的第18辆车能否在当天10:30之前加完气?请说明理由.
【答案】(1)8000立方米;(2)y=﹣200x+10100.(3)可以,见解析
【解析】
试题分析:(1)由图象可知,加气站原来有2000方气,加气结束后变为10000方,由此即可求出注入了多少方天然气;
(2)x≥0.5时,可设y=kx+b,由图象知,该直线过点(0.5,10000),(10.5,8000),利用方程组即可求解;
(3)第18辆车在10:30之前能否加完气,就要看前18辆车加气所用时间是否超过2小时即可.
解:(1)由图可知,星期天当日注入了10000﹣2000=8000立方米的天然气;(2分)
(2)当x≥0.5时,设储气罐中的储气量y(立方米)与时间x(小时)的函数解析式为:y=kx+b(k,b为常数,且k≠0),
∵它的图象过点(0.5,10000),(10.5,8000),
∴,
解得.
故所求函数解析式为:y=﹣200x+10100.(6分)
(3)可以.
∵给18辆车加气需18×20=360(立方米),储气量为10000﹣360=9640(立方米),
于是有:9640=﹣200x+10100,
解得:x=2.3,
2.3﹣0.5=1.8(小时)
而从8:30到10:30相差2.0小时,显然有:1.8<2.0.
故第18辆车在当天10:30之前能加完气.
科目:初中数学 来源: 题型:
【题目】如图(1)所示,∠AOB、∠COD都是直角.
(1)试猜想∠AOD与∠COB在数量上是相等,互余,还是互补的关系.请你用推理的方法说明你的猜想是合理的.
(2)当∠COD绕着点O旋转到图(2)所示位置时,你在(1)中的猜想还成立吗?请你证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,A是抛物线y= x2上的一个动点,且点A在第一象限内.AE⊥y轴于点E,点B坐标为(0,2),直线AB交x轴于点C,点D与点C关于y轴对称,直线DE与AB相交于点F,连结BD.设线段AE的长为m,△BED的面积为S.
(1)当m= 时,求S的值.
(2)求S关于m(m≠2)的函数解析式.
(3)①若S= 时,求 的值;
②当m>2时,设 =k,猜想k与m的数量关系并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:如果10b=n,那么称b为n的劳格数,记为b= d(n).
(1)根据劳格数的定义,可知d(10)=1,d(102)=2,直接写出 d(103)的值.
(2)劳格数有如下运算性质:若m,n为正数,则d(mn)= d(m)+ d(n);d()= d(m)- d(n).
根据运算性质,求:,若 ,直接写出,的值.
(3)下表中与数x对应的劳格数 有且只有两个是错误的,请找出错误的劳格数并改正.
1.5 | 3 | 5 | 6 | 8 | 9 | 12 | 27 | |
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知在平面直角坐标系xOy中,O是坐标原点,抛物线y=﹣x2+bx+c(c>0)的顶点为D,与y轴的交点为C,过点C作CA∥x轴交抛物线于点A,在AC延长线上取点B,使BC= AC,连接OA,OB,BD和AD.
(1)若点A的坐标是(﹣4,4).
①求b,c的值;
②试判断四边形AOBD的形状,并说明理由;
(2)是否存在这样的点A,使得四边形AOBD是矩形?若存在,请直接写出一个符合条件的点A的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】把一条12个单位长度的线段分成三条线段,其中一条线段成为4个单位长度,另两条线段长都是单位长度的整数倍.
(1)不同分段得到的三条线段能组成多少个不全等的三角形?用直尺和圆规作这些三角形(用给定的单位长度,不写作法,保留作图痕迹);
(2)求出(1)中所作三角形外接圆的周长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某校举办八年级学生数学素养大赛,比赛共设四个项目:七巧板拼图,趣题巧解,数学应用,魔方复原,每个项目得分都按一定百分比折算后记入总分,下表为甲,乙,丙三位同学得分情况(单位:分)
七巧板拼图 | 趣题巧解 | 数学应用 | 魔方复原 | |
甲 | 66 | 89 | 86 | 68 |
乙 | 66 | 60 | 80 | 68 |
丙 | 66 | 80 | 90 | 68 |
(1)比赛后,甲猜测七巧板拼图,趣题巧解,数学应用,魔方复原这四个项目得分分别按10%,40%,20%,30%折算记入总分,根据猜测,求出甲的总分;
(2)本次大赛组委会最后决定,总分为80分以上(包含80分)的学生获一等奖,现获悉乙,丙的总分分别是70分,80分.甲的七巧板拼图、魔方复原两项得分折算后的分数和是20分,问甲能否获得这次比赛的一等奖?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com