【题目】如图,Rt△ABC中,∠C=90°,BC=6,DE是△ABC的中位线,点D在AB上,把点B绕点D按顺时针方向旋转α(0°<α<180°)角得到点F,连接AF,BF.下列结论:①△ABF是直角三角形;②若△ABF和△ABC全等,则α=2∠BAC或2∠ABC;③若α=90°,连接EF,则S△DEF=4.5;其中正确的结论是( )
A.①②B.①③C.①②③D.②③
【答案】C
【解析】
①根据直角三角形斜边中线的性质和旋转的性质得出,然后利用等腰三角形的性质和三角形内角和定理即可判断;
②分两种情况讨论:或,分别求α即可 ;
③先根据题意画出图形,首先证明 ,然后得出,最后利用即可求解.
①∵DE是△ABC的中位线,
.
由旋转可知,
,
.
,
,
即 ,
∴△ABF是直角三角形,故①正确;
,
.
若△ABF和△ABC全等,
当时,
;
当时,
,
综上所述,若△ABF和△ABC全等,则α=2∠BAC或2∠ABC,故②正确;
过点F作交ED的延长线于点G,
∵DE是的中位线,
,
.
,
.
,
,
.
,
.
,D为AB中点,
.
在和中,
,
,故③正确;
所以正确的有:①②③.
故选:C.
科目:初中数学 来源: 题型:
【题目】只有1和它本身两个因数且大于1的正整数叫做素数.我国数学家陈景润哥德巴赫猜想的研究中取得了世界领先的成果.哥德巴赫猜想是“每个大于2的偶数都表示为两个素数的和”.如20=3+17.
(1)从7、11、19、23这4个素数中随机抽取一个,则抽到的数是7的概率是 ;
(2)从7、11、19、23这4个素数中随机抽取1个数,再从余下的3个数中随机抽取1个数,用画树状图或列表的方法,求抽到的两个素数之和等于30的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=ax2+2ax+c(a≠0)与x轴交于点A,B(1,0)两点,与y轴交于点C,且OA=OC.
(1)求抛物线的解析式;
(2)点D是抛物线顶点,求△ACD的面积;
(3)如图2,射线AE交抛物线于点E,交y轴的负半轴于点F(点F在线段AE上),点P是直线AE下方抛物线上的一点,S△ABE=,求△APE面积的最大值和此动点P的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,DC与⊙O相切于点C,交AB的延长线于点D.
(1)求证:∠BAC=∠BCD;
(2)若BD=4,DC=6,求⊙O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知y关于x的二次函数y=x-bx+b+b-5的图象与x轴有两个公共点.
(1)求b的取值范围;
(2)若b取满足条件的最大整数值,当m≤x≤时,函数y的取值范围是n≤y≤6-2m,求m,n的值;
(3)若在自变量x的值满足b≤x≤b+3的情况下,对应函数y的最小值为,求此时二次函数的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了解某校九年级男生1000米跑的水平,从中随机抽取部分男生进行测试,并把测试成绩分为D、C、B、A四个等次绘制成如图所示的不完整的统计图,请你依图解答下列问题:
(1)a= ,b= ,c= ;
(2)扇形统计图中表示C等次的扇形所对的圆心角的度数为 度;
(3)学校决定从A等次的甲、乙、丙、丁四名男生中,随机选取两名男生参加全市中学生1000米跑比赛,请用列表法或画树状图法,求甲、乙两名男生同时被选中的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知二次函数y=x2-mx-m-1的图像交x轴于A、B两点(A、B分别位于坐标原点O的左、右两侧),交y轴于点C,且△ABC的面积为6.
(1)求这个二次函数的表达式;
(2)若P为平面内一点,且PB=3PA,试求当△PAB的面积取得最大值时点P的坐标,并求此时直线PO将△ABC分成的两部分的面积之比.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com