精英家教网 > 初中数学 > 题目详情

【题目】如图,△ABC中,∠BAC=120°,AB=AC=6.P是底边BC上的一个动点(P与B、C不重合),以P为圆心,PB为半径的⊙P与射线BA交于点D,射线PD交射线CA于点E.

(1)若点E在线段CA的延长线上,设BP=x,AE=y,求y关于x的函数关系式,并写出x的取值范围.
(2)当BP=2 时,试说明射线CA与⊙P是否相切.
(3)连接PA,若SAPE= SABC , 求BP的长.

【答案】
(1)解:过A作AF⊥BC于F,过P作PH⊥AB于H,

∵∠BAC=120°,AB=AC=6,

∴∠B=∠C=30°,

∵PB=PD,

∴∠PDB=∠B=30°,CF=ACcos30°=6× =3

∴∠ADE=30°,

∴∠DAE=∠CPE=60°,

∴∠CEP=90°,

∴CE=AC+AE=6+y,

∴PC= =

∵BC=6

∴PB+CP=x+ =6

∴y=﹣ x+3,

∵BD=2BH= x<6,

∴x<2

∴x的取值范围是0<x<2


(2)解:∵BP=2 ,∴CP=4

∴PE= PC=2 =PB,

∴射线CA与⊙P相切


(3)解:当D点在线段BA上时,

连接AP,

∵SABC= BCAF= ×6 ×3=9

∵SAPE= AEPE= y ×(6+y)= SABC=

解得:y= ,代入y=﹣ x+3得x=4

当D点BA延长线上时,

PC= EC= (6﹣y),

∴PB+CP=x+ (6﹣y)=6

∴y= x﹣3,

∵∠PEC=90°,

∴PE= = = (6﹣y),

∴SAPE= AEPE= x= y (6﹣y)= SABC=

解得y= ,代入y= x﹣3得x=3 或5

综上可得,BP的长为4 或3 或5


【解析】(1)过A作AF⊥BC于F,过P作PH⊥AB于H,根据等腰三角形的性质得到CF=ACcos30°=6× =3 ,推出∠CEP=90°,求得CE=AC+AE=6+y,列方程PB+CP=x+ =6 ,于是得到y=﹣ x+3,根据BD=2BH= x<6,即可得到结论;(2)根据已知条件得到PE= PC=2 =PB,于是得到射线CA与⊙P相切;(3)D在线段BA上和延长线上两种情况,根据三角形的面积列方程即可得到结果.本题考查了直线与圆的位置关系,等腰三角形的性质,直角三角形的性质,三角形面积的计算,求一次函数的解析式,证得PE⊥AC是解题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某文具店购进一批纪念册,每本进价为20元,出于营销考虑,要求每本纪念册的售价不低于20元且不高于28元,在销售过程中发现该纪念册每周的销售量y(本)与每本纪念册的售价x(元)之间满足一次函数关系:当销售单价为22元时,销售量为36本;当销售单价为24元时,销售量为32本.
(1)请直接写出y与x的函数关系式;
(2)当文具店每周销售这种纪念册获得150元的利润时,每本纪念册的销售单价是多少元?
(3)设该文具店每周销售这种纪念册所获得的利润为w元,将该纪念册销售单价定为多少元时,才能使文具店销售该纪念册所获利润最大?最大利润是多少?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知A、B、C、D是平面坐标系中坐标轴上的点,且△AOB≌△COD.设直线AB的表达式为y1=k1x+b1 , 直线CD的表达式为y2=k2x+b2 , 则k1k2=

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,花果山上有两只猴子在一棵树CD上的点B处,且BC=5m,它们都要到A处吃东西,其中一只猴子甲沿树爬下走到离树10m处的池塘A处,另一只猴子乙先爬到树顶D处后再沿缆绳DA线段滑到A处.已知两只猴子所经过的路程相等,设BDxm

1)请用含有x整式表示线段AD的长为______m

2)求这棵树高有多少米?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,3×3的方格分为上中下三层,第一层有一枚黑色方块甲,可在方格A、B、C中移动,第二层有两枚固定不动的黑色方块,第三层有一枚黑色方块乙,可在方格D、E、F中移动,甲、乙移入方格后,四枚黑色方块构成各种拼图.

(1)若乙固定在E处,移动甲后黑色方块构成的拼图是轴对称图形的概率是
(2)若甲、乙均可在本层移动.
①用树形图或列表法求出黑色方块所构拼图是轴对称图形的概率.
②黑色方块所构拼图是中心对称图形的概率是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点M是线段AB中点,AD、BC交于点N,连接AC、BD、MC、MD,l=2,3=4.

(1)求证:AMD≌△BMC;

(2)图中在不添加新的字母的情况下,请写出除了AMD≌△BMC”以外的所有全等三角形,并选出其中一对进行证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,AC=BC,∠C=90°,D是AB的中点,DE⊥DF,点E,F分别在AC,BC上,求证:DE=DF.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图在ABC中,BO,CO分别平分∠ABC,ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=1,BEC=2,则以下结论①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正确的是(  )

A. ①②③ B. ①③④ C. ①④ D. ①②④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点D是 上一点,且∠BDE=∠CBE,BD与AE交于点F.

(1)求证:BC是⊙O的切线;
(2)若BD平分∠ABE,求证:DE2=DFDB;
(3)在(2)的条件下,延长ED、BA交于点P,若PA=AO,DE=2,求PD的长.

查看答案和解析>>

同步练习册答案