精英家教网 > 初中数学 > 题目详情

【题目】如图在ABC中,BO,CO分别平分∠ABC,ACB,交于O,CE为外角∠ACD的平分线,BO的延长线交CE于点E,记∠BAC=1,BEC=2,则以下结论①∠1=22,②∠BOC=32,③∠BOC=90°+1,④∠BOC=90°+2正确的是(  )

A. ①②③ B. ①③④ C. ①④ D. ①②④

【答案】C

【解析】

根据三角形内角和定理以及三角形角平分线的定义可得∠BOC=90°+1,再结合三角形外角性质可得∠ECD=OBC+2,从而可得∠BOC=90°+2,据此即可进行判断.

BO,CO分别平分∠ABC,ACB,

∴∠OBC=ABC,OCB=ACB,

∵∠ABC+ACB+1=180°,

∴∠ABC+ACB=180°-1,

∴∠OBC+OCB=ABC+ACB)=(180°-1)=90°-1,

∴∠BOC=180°-OBC-OCB=180°-(90°-1)=90°+1,

∵∠ACD=ABC+1,CE平分∠ACD,

∴∠ECD=ACD=ABC+1),

∵∠ECD=OBC+2,

∴∠2=1,即∠1=22,

∴∠BOC=90°+1=90°+2,

∴①④正确,②③错误,

故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】下列说法中,正确的是(  )

A. 不带根号的数不是无理数

B. 的立方根是±2

C. 绝对值等于的实数是

D. 每个实数都对应数轴上一个点

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某职业高中机电班共有学生42人,其中男生人数比女生人数的2倍少3人.

(1)该班男生和女生各有多少人?

(2)某工厂决定到该班招录30名学生,经测试,该班男、女生每天能加工的零件数分别为50个和45个,为保证他们每天加工的零件总数不少于1460个,那么至少要招录多少名男学生?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图四边形ABCD是平行四边形E是边CD上一点BC=EC,CF⊥BEAB于点F,PEB延长线上一点下列结论:①BE平分∠CBF;②CF平分∠DCB;③BC=FB;④PF=PC,其中正确结论的个数为( )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平行四边形ABCD中,∠ABD的平分线BEAD于点E,CDB的平分线DFBC于点F.求证:四边形DEBF是平行四边形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】Rt△ABC中,∠C=90°,点D、E分别是△ABC边AC、BC上的点,点P是一动点.令∠PDA=∠1,∠PEB=∠2,∠DPE=∠α.

(1)若点P在线段AB上,如图(1)所示,且∠α=50°,则∠1+∠2= °;

(2)若点P在边AB上运动,如图(2)所示,则∠α、∠1、∠2之间有何关系?说明理由

(3)若点P在Rt△ABC斜边BA的延长线上运动(CE<CD),则∠α、∠1、∠2之间有何关系?猜想并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系中,平行四边形ABOC如图放置,点A、C的坐标分别是(0,4)、(﹣1,0),将此平行四边形绕点O顺时针旋转90°,得到平行四边形A′B′OC′.

(1)若抛物线经过点C、A、A′,求此抛物线的解析式;
(2)点M时第一象限内抛物线上的一动点,问:当点M在何处时,△AMA′的面积最大?最大面积是多少?并求出此时M的坐标;
(3)若P为抛物线上一动点,N为x轴上的一动点,点Q坐标为(1,0),当P、N、B、Q构成平行四边形时,求点P的坐标,当这个平行四边形为矩形时,求点N的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知矩形ABCD,AB=6,BC=8,E,F分别是AB,BC的中点,AF与DE相交于I,与BD相交于H,则四边形BEIH的面积为(
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,已知Rt△AOB的两直角边OA,OB分别在x轴,y轴的正半轴上(OA<OB),且OA,OB的长分别是一元二次方程x2﹣14x+48=0的两个根,线段AB的垂直平分线CD交AB于点C,分别交x轴,y轴于点D,E.

(1)直接写出点A、B的坐标:A , B
(2)求线段AD的长;
(3)已知P是直线CD上一个动点,点Q是直线AB上一个动点,则在坐标平面内是否存在点M,使得以点C、P、Q、M为顶点的四边形是以5为边长的正方形?若存在,直接写出点M的坐标;若不存在,说明理由.

查看答案和解析>>

同步练习册答案