精英家教网 > 初中数学 > 题目详情

【题目】在矩形ABCD中,AD=3,CD=4,点E在边CD上,且DE=1.

(1)感知:如图①,连接AE,过点EEF⊥AE,交BC于点F,连接AF,易证:△ADE≌△ECF(不需要证明);

(2)探究:如图②,点P在矩形ABCD的边AD上(点P不与点A、D重合),连接PE,过点EEF⊥PE,交BC于点F,连接PF.求证:△PDE∽△ECF;

(3)应用:如图③,若EFAB边于点F,其他条件不变,且△PEF的面积是3,则AP的长为________.

【答案】(1)证明见解析(2)证明见解析(3)2

【解析】

感知:先利用矩形性质得: D=C=90°,再利用同角的余角相等得: DAE=FEC,根据已知边的长度计算出AD=CE=3,则由ASA证得: ADE≌△ECF;
探究:利用两角相等证明PDE∽△ECF;
应用:作辅助线,构建如图②一样的相似三角形,利用探究得: PDE∽△EGF,,所以,再利用PEF的面积是3,列式可得:PE·EF=6,两式结合可求得PE的长,利用勾股定理求PD,从而得出AP的长.

(1)证明:感知:如图①,四边形ABCD为矩形,

∴∠D=∠C=90°,

∴∠DAE+∠DEA=90°,

∵EF⊥AE,

∴∠AEF=90°,

∴∠DEA+∠FEC=90°,

∴∠DAE=∠FEC,

∵DE=1,CD=4,

∴CE=3,

∵AD=3,

∴AD=CE,

∴△ADE≌△ECF(ASA)

(2)探究:如图②,四边形ABCD为矩形,

∴∠D=∠C=90°,

∴∠DPE+∠DEP=90°,

∵EF⊥PE,

∴∠PEF=90°,

∴∠DEP+∠FEC=90°,

∴∠DPE=∠FEC,

∴△PDE∽△ECF

(3)应用:解:如图③,过FFGDCG,

∵四边形ABCD为矩形,

ABCD,

FG=BC=3,

PEEF,

SPEF=PEEF=3,

PEEF=6,

同理得:△PDE∽△EGF,

=

=

EF=3PE,

3PE2=6,

PE=±

PE0,

PE=

RtPDE中,由勾股定理得:PD==1,

AP=AD﹣PD=3﹣1=2.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知正方形ABCD中,EF分别是正方形ADCD边上的点,且∠EBF=45°,对角线ACBE,BFM,N,对于以下结论,正确的是( )①AE+CF=FE△ABE△BCFAM2+CN2=MN2△EFD的周长等于2AB

A.①②③B.①②④C.①③④D.①②③④

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某商场销售一批名牌衬衫,平均每天可销售20,每件盈利40.为了扩大销售,增加盈利,尽量减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价5,商场平均每天可多售出10.:

(1)若商场每件衬衫降价4,则商场每天可盈利多少元?

(2)若商场平均每天要盈利1200,每件衬衫应降价多少元?

(3)要使商场平均每天盈利1600,可能吗?请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,CAB上一点,点DE分别在AB两侧,ADBE,且ADBCBEAC

1)求证:CDCE

2)连接DE,交AB于点F,猜想BEF的形状,并给予证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,△ABC在直角坐标系内,三个顶点的坐标分别为A(0,3),B(3,4),C(2,2)(正方形网格中每个小正方形的边长均为一个单位长度).

①画出△ABC向下平移4个单位长度得到的△A1B1C1C1的坐标是________

②以点B为位似中心,在网格内画出△A2B2C2使△A2B2C2△ABC位似,且位似比为2:1,点C2的坐标是________

③若M(a,b)为线段AC上任一点,写出点M的对应点M2的坐标________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】我市从 2018 1 1 日开始,禁止燃油助力车上路,于是电动自 行车的市场需求量日渐增多某商店计划最多投入 8 万元购进 A、B 两种型号的 电动自行车共 30 辆,其中每辆 B 型电动自行车比每辆 A 型电动自行车多 500 元.用 5 万元购进的 A 型电动自行车与用 6 万元购进的 B 型电动自行车数量一 样.

(1)求 A、B 两种型号电动自行车的进货单价;

(2)若 A 型电动自行车每辆售价为 2800 ,B 型电动自行车每辆售价为 3500 元,设该商店计划购进 A 型电动自行车 m 辆,两种型号的电动自行车全部销售 后可获利润 y 元.写出 y m 之间的函数关系式;

(3)该商店如何进货才能获得最大利润?此时最大利润是多少元?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=kx+bk≠0)与抛物线y=ax2a≠0)交于AB两点,且点A的横坐标是-2,点B的横坐标是3,则以下结论:

抛物线y=ax2a≠0)的图象的顶点一定是原点;

②x0时,直线y=kx+bk≠0)与抛物线y=ax2a≠0)的函数值都随着x的增大而增大;

③AB的长度可以等于5

④△OAB有可能成为等边三角形;

-3x2时,ax2+kxb

其中正确的结论是( )

A. ①②④ B. ①②⑤ C. ②③④ D. ③④⑤

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】操作探究:

数学研究课上,老师带领大家探究《折纸中的数学问题》时,出示如图1所示的长方形纸条ABCD,其中AD=BC=1,AB=CD=5.然后在纸条上任意画一条截线段MN,将纸片沿MN折叠,MB与DN交于点K,得到MNK.如图2所示:

探究:

(1)若1=70°MKN= °

(2)改变折痕MN位置,MNK始终是 三角形,请说明理由;

应用:

(3)爱动脑筋的小明在研究MNK的面积时,发现KN边上的高始终是个不变的值.根据这一发现,他很快研究出KMN的面积最小值为,此时1的大小可以为 °

(4)小明继续动手操作,发现了MNK面积的最大值.请你求出这个最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知FGABCDAB,垂足分别为GD,∠1=∠2

求证:∠CED+ACB180°,

请你将小明的证明过程补充完整.

证明:∵FGABCDAB,垂足分别为GD(已知)

∴∠FGB=∠CDB90°(   )

GFCD(   )

GFCD(已证)

∴∠2=∠BCD(   )

又∵∠1=∠2(已知)

∴∠1=∠BCD(   )

   (   )

∴∠CED+ACB180°(   )

查看答案和解析>>

同步练习册答案