分析 (1)利用已知条件可证明∠GOA=∠GAO,由等腰三角形的判定可得AG=OG,所以△AOG是等腰三角形;
(2)由已知可得BK=KC,因为AC∥y轴,可得GA=GB;根据等腰三角形的性质得出∠GOB=∠GBO,∠AOG=∠OAG,所以∠AOG+∠BOG=∠OAG+∠OBG,即∠AOB=∠OAG+∠OBG,即可求得∠AOB=90°;
(3)先证得BM是∠ABC的平分线,设∠OBC=x,则x+∠POB=90°,而∠POA+∠POB=∠AOB=90°,求得x=∠POA,进一步证得x=∠GAM.根据∠OMB=∠GAM+∠ABM=x+∠ABM=x+∠PBM=∠MBO,即可证得结论.
解答
解:(1)等腰三角形,
∵AC∥y轴,
∴∠OAC=∠AOG,
∵∠OAC=∠OAG,
∴∠AOG=∠OAG,
∴AG=OG,
∴△AOG是等腰三角形;
(2)如图1,设BC交y轴于K,
∵点B、C关于y轴对称,
∴CK=BK,
∵AC∥y轴,
∴AG=BG,
∵AG=OG,
∴OG=BG,![]()
∴∠GOB=∠GBO,
∵∠AOG=∠OAG,
∴∠AOG+∠BOG=∠OAG+∠OBG,即∠AOB=∠OAG+∠OBG,
∴∠AOB=90°
∴AO⊥BO.
(3)如图2,∵∠ACM=45°,∠ACB=90°,
∴CM是∠ACB的平分线,
∵AM是∠BAC的平分线,
∴BM平分∠ABC,
设∠OBC=x,则x+∠POB=90°,而∠POA+∠POB=∠AOB=90°,
∴x=∠POA.
∵∠AOG=∠OAG,
∴x=∠GAM.
∴∠OMB=∠GAM+∠ABM
=x+∠ABM
=x+∠PBM
=∠MBO.
∴OB=OM.
点评 本题考查了角平分线的性质、轴对称的性质、等腰三角形的判定和性质、三角形的内角和定理,题目的综合性强,解题的关键是正确添加辅助线.
科目:初中数学 来源: 题型:选择题
| A. | 两条射线构成的图形叫做角 | B. | 连接两点的线段叫做两点间的距离 | ||
| C. | 38.15°=38°9′ | D. | 若AC=BC,则点C是线段的中点 |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com