【题目】如图1,已知直线l1∥l2,线段AB在直线l1上,BC垂直于l1交l2于点C,且AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2、l1于点D. E(点A. E位于点B的两侧),满足BP=BE,连接AP、CE.
(1)求证:△ABP≌△CBE;
(2)连结AD、BD,BD与AP相交于点F. 如图2.
①当=2时,求证:AP⊥BD;
②当=n(n>1)时,设△DAP的面积为S1,△EPC的面积为S2,求的值.
【答案】(1)见解析;(2)①见解析;②n+1.
【解析】
(1)根据平行和垂直得出∠ABP=∠CBE,再根据SAS证明即可;
(2)①延长AP交CE于点H,求出AP⊥CE,证出△CPD∽△BPE,推出DP=PE,求出平行四边形BDCE,推出CE∥BD即可;②分别用S表示出△PAD和△PCE的面积,代入求出即可.
(1)证明:∵BC⊥直线l1,
∴∠ABP=∠CBE,
在△ABP和△CBE中
∴△ABP≌△CBE(SAS);
(2)①证明:延长AP交CE于点H,
∵△ABP≌△CBE,
∴∠APB=∠CEB,
∵∠PAB+∠APB=90°,
∴∠PAB+∠CEB=90°,
∴AH⊥CE,
∵=2,即P为BC的中点,直线l1∥直线l2,
∴△CPD∽△BPE,
∴
∴DP=PE,
∴四边形BDCE是平行四边形,
∴CE∥BD,
∵AH⊥CE,
∴AP⊥BD;
②解:∵=n,
∴BC=nBP,
∴CP=(n-1)BP,
∵CD∥BE,
易得△CPD∽△BPE,
∴
设△PBE的面积S△PBE=S,则△PCE的面积S△PCE满足,即S2=(n-1)S,
∵S△PAB=S△BCE=nS,
∴S△PAE=(n+1)S,
∵
∴S1=(n-1)S△PAE,即S1=(n+1)(n-1)S,
∴.
科目:初中数学 来源: 题型:
【题目】如图,点P在射线AB的上方,且∠PAB=45°,PA=2,点M是射线AB上的动点(点M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.
(1)求证:AM=QN.
(2)直线QN与以点P为圆心,以PN的长为半径的圆是否存在相切的情况?若存在,请求出此时AM的长,若不存在,请说明理由.
(3)当以点P为圆心,以PN的长为半径的圆经过点Q时,直接写出劣弧NQ与两条半径所围成的扇形的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】点(为正整数)都在数轴上,点在原点的左边,且;点在点的右边,且;点在点的左边,且;点在点的右边,且;…,依照上述规律,点所表示的数分别为 ( )
A.2018,-2019B.1009,-1010C.-2018,2019D.-1009,1009
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】用正方形硬纸板做三棱柱盒子,每个盒子由3个矩形侧面和2个正三角形底面组成。硬纸板以如图两种方式裁剪(裁剪后边角料不再利用)
A方法:剪6个侧面; B方法:剪4个侧面和5个底面。
现有19张硬纸板,裁剪时张用A方法,其余用B方法。
(1)用的代数式分别表示裁剪出的侧面和底面的个数;
(2)若裁剪出的侧面和底面恰好全部用完,问能做多少个盒子?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,D是BC中点,过点D的直线GF交AC于F,交AC的平行线BG于G,DE⊥DF,交AB于E,连接BG,请你判断BE+CF与EF的大小关系,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图所示.
(1)作出△ABC关于y轴对称的△A′B′C′,并写出△A′B′C′三个顶点的坐标.
(2)在x轴上画出点P,使PA+PC最小,写出作法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知关于x的方程
(1)若方程有两个相等的实数根,求m的值,并求出此时方程的根;
(2)是否存在正数m,使方程的两个实数根的平方和等于224.若存在,求出满足条件的m的值;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,已知A(0,a)、B(b, 0),且a、b满足: ,点D为x正半轴上一动点
(1)求A、B两点的坐标
(2)如图,∠ADO的平分线交y轴于点C,点 F为线段OD上一动点,过点F作CD的平行线交y轴于点H,且∠AFH=45°, 判断线段AH、FD、AD三者的数量关系,并予以证明
(3)以AO为腰,A为顶角顶点作等腰△ADO,若∠DBA=30°,直接写出∠DAO的度数
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,是等腰直角三角形,其中,是边上的一点,连接,过作交于,,且,连接并延长,交于点.若四边形的面积为,则的面积为__________.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com