精英家教网 > 初中数学 > 题目详情

【题目】如图P在射线AB的上方PAB=45°,PA=2,M是射线AB上的动点(M不与点A重合),现将点P绕点A按顺时针方向旋转60°到点Q,将点M绕点P按逆时针方向旋转60°到点N,连接AQ,PM,PN,作直线QN.

(1)求证:AM=QN.

(2)直线QN与以点P为圆心PN的长为半径的圆是否存在相切的情况?若存在请求出此时AM的长若不存在请说明理由.

(3)当以点P为圆心PN的长为半径的圆经过点Q直接写出劣弧NQ与两条半径所围成的扇形的面积.

【答案】(1)证明见解析; (2)存在.理由见解析; (3)劣弧NQ与两条半径所围成的扇形的面积为π.

【解析】

(1)根据旋转的旋转判断出△APQ为等边三角形,再判断出∠APM=∠QPN,从而得出△APM≌△QPN即可;
(2)由直线和圆相切得出∠AMP=∠QNP=90°,再用勾股定理即可求出结论;
(3)先判断出PA=PQ,再判断出PQ=PN=PM,进而求出∠QPM=30°,即可求出∠QPN=90°,最后用扇形的面积公式即可.

(1)如图1,连接PQ,由点P绕点A按顺时针方向旋转60°到点Q,

可得AP=AQ,∠PAQ=60°,

∴△APQ为等边三角形,

∴PA=PQ,∠APQ=60°,

由点M绕点P按逆时针方向旋转60°到点N,

可得PM=PN,∠MPN=60°,

∴∠APM=∠QPN,则△APM≌△QPN(SAS),

∴AM=QN.

(2)存在.理由如下:

如图2,由(1)中的证明可知△APM≌△QPN,

∴∠AMP=∠QNP,

直线QN与以点P为圆心,以PN的长为半径的圆相切,

∴∠AMP=∠QNP=90°,即PN⊥QN.

在RtAPM中,∠PAB=45°,PA=2,

∴AM=.

(3)由(1)知APQ是等边三角形,

∴PA=PQ,∠APQ=60°.

以点P为圆心,以PN的长为半径的圆经过点Q,

∴PN=PQ=PA.

∵PM=PN,

∴PA=PM,

∵∠PAB=45°,

∴∠APM=90°,

∴∠MPQ=∠APM-∠APQ=30°.

∵∠MPN=60°,

∴∠QPN=90°,

劣弧NQ与两条半径所围成的扇形的面积是扇形QPN的面积,而此扇形的圆心角QPN=90°,半径为PN=PM=PA=2.

劣弧NQ与两条半径所围成的扇形的面积==π.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,在一条笔直的东西向海岸线l上有一长为1.5km的码头MN和灯塔C,灯塔C距码头的东端N20km.一轮船以36km/h的速度航行,上午1000A处测得灯塔C位于轮船的北偏西30°方向,上午1040B处测得灯塔C位于轮船的北偏东60°方向,且与灯塔C相距12km.

(1)若轮船照此速度与航向航向,何时到达海岸线?

(2)若轮船不改变航向,该轮船能否停靠在码头?请说明理由(参考数据: ≈1.4 ≈1.7)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,RtABC的内切圆⊙O与两直角边ABBC分别相切于点D,E,过劣弧DE(不包括端点D,E)上任一点P作⊙O的切线MN,与ABBC分别交于点MN,若⊙O的半径为r,则RtMBN的周长为(  )

A. r B. r C. 2r D. r

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知AB是半圆O的直径,点C是半圆O上的动点,点D是线段AB延长线上的动点,在运动过程中,保持CD=OA

1)当直线CD与半圆O相切时(如图),求∠ODC的度数;

2)当直线CD与半圆O相交时(如图),设另一交点为E,连接AE,若AE∥OC

①AEOD的大小有什么关系?为什么?

∠ODC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请阅读下述材料:

下述形式的繁分数叫做有限连分数,其中n是自然数,a0是整数,a1a2a3,…,an是正整数:

其中称为部分商。

按照以下方式可将任何一个分数转化为连分数的形式:,则;考虑的倒数,有,从而;再考虑的倒数,有,于是得到a的连分数展开式,它有4个部分商:3133

可利用连分数来求二元一次不定方程的特殊解,以为例,首先将写成连分数的形式,如上所示;其次,数部分商的个数,本例是偶数个部分商(奇数情况请见下例);最后计算倒数第二个渐近分数,从而是一个特解。

考虑不定方程,先将写成连分数的形式:

注意到此连分数有奇数个部分商,将之改写为偶数个部分商的形式:

计算倒数第二个渐近分数:,所以的一个特解。

对于分式,有类似的连分式的概念,利用将分数展开为连分数的方法,可以将分式展开为连分式。例如的连分式展开式如下,它有3个部分商:

再例如,,它有4个部分商:1

请阅读上述材料,利用所讲述的方法,解决下述两个问题

1)找出两个关于x的多项式pq,使得

2)找出两个关于x的多项式uv,使得

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在正方形ABCD中,AB=3,点E,F分别在CD,AD上,CE=DF,BE,CF相交于点G.若图中阴影部分的面积与正方形ABCD的面积之比为2:3,则BCG的周长为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一条抛物线与x轴相交于A,B两点,其顶点P在折线C-D-E上移动,若点C,D,E的坐标分别为(-1,4),(3,4),(3,1),点B的横坐标的最小值为1,则点A的横坐标的最大值为________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】阅读材料:我们知道:点AB在数轴上分别表示有理数abAB两点之间的距离表示为AB,在数轴上AB两点之间的距离AB=|a-b|.所以式子|x3|的几何意义是数轴上表示有理数3的点与表示有理数x的点之间的距离.

根据上述材料,解答下列问题:

1)若|x3|=4,则x=______

2)式子|x3|=|x+1|,则x=______

3)若|x3|+|x+1|=9,借助数轴求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图1,已知直线l1l2,线段AB在直线l1,BC垂直于l1l2于点C,AB=BC,P是线段BC上异于两端点的一点,过点P的直线分别交l2l1于点D. E(A. E位于点B的两侧),满足BP=BE,连接APCE.

1)求证:ABP≌△CBE

2)连结ADBDBDAP相交于点F. 如图2.

①当=2时,求证:APBD

②当=n(n>1),DAP的面积为S1,EPC的面积为S2,的值.

查看答案和解析>>

同步练习册答案