精英家教网 > 初中数学 > 题目详情
11.下列各式“-(-2),-|-2|,-22,-(-2)2计算结果为负数的个数有(  )个.
A.1B.2C.3D.4

分析 先计算,再利用正负数的定义即可.

解答 解:∵-(-2)=2,-|-2|=-2,-22=4,-(-2)2=-4,
∴计算结果为负数的有:-|-2|,-22,-(-2)2共3个,
故选C.

点评 此题主要考查了正负数的定义,先计算再判断是解答此题的关键.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:选择题

10.如图,直线l1∥l2,以直线l1上的点A为圆心,适当长为半径画弧,分别交直线l1和l2于B、C两点,连接AC、BC,若∠ABC=65°,则∠1的度数是(  )
A.35°B.50°C.65°D.70°

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知抛物线C:y=x2+(2m-1)x-2m.
(1)若m=1,抛物线C交x轴于A,B两点,求AB的长;
(2)若一次函数y=kx+mk的图象与抛物线C有唯一公共点,求m的取值范围;
(3)若m=2,M,N是抛物线C上两动点(点M在左,点N在右),分别过点M,N作PM∥x轴,PN∥y轴,PM,PN交于点P,点M,N运动时,且始终保持MN=$\sqrt{2}$不变,当△MNP得面积最大时,求直线MN的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

19.如图,△ABC中,AC=6,BC=8,以AB为边向外作正方形ABDE,若此正方形中心为点O,则线段OC长为7$\sqrt{2}$.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.如图,∠MON=90°,在△ABC中,AC=8,BC=6,AB=10,若△ABC的顶点A,B分别在OM,ON上,当A点从O点出发沿OM向右运动时,同时点B在ON上运动,连结OC,则OC的长度最大值是10.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

16.用小木棒按下图方式搭三角形:

观察发现规律并填写下表:
三角形个数1234n
小木棒根数3579
2n+1 

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

3.如图,在直角梯形ABCD中,∠C=90°,过A点作AE⊥AB,交CD于E,而且有AE=CE.求证:BE平分∠ABC.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.阅读下列材料:
我们知道|x|的几何意义是在数轴上数x对应的点与原点的距离,即|x|=|x-0|,也就是说,|x|表示在数轴上数x与数0对应点之间的距离,这个结论可以推广为|x1-x2|表示在数轴上x1,x2对应点之间的距离.
例1:解方程|x|=2,容易看出,在数轴上与原点距离为2点的对应数为2或-2,即该方程的解为x=2或x=-2
例2:解不等式|x-1|>2,如图1,在数轴上找出|x-1|=2的解,即到1的距离为2的点对应的数为-1和3,则|x-1|>2的解集为x<-1或x>3.
例3:解方程|x-1|+|x+2|=5.由绝对值的几何意义知,该方程表示求在数轴上与1和-2的距离之和为5的点对应的x的值在数轴上,1和-2的距离为3,满足方程的x对应点在1的右边或-2的左边,若x对应点在1的右边,由图2可以看出x=2.同理,若x对应点在-2的左边,可得x=-3,故原方程的解是x=2或x=-3.

参考阅读材料,解答下列问题:
(1)方程|x+3|=4的解为x=1或x=-7.
(2)不等式|x-3|+|x+4|≥9的解集为x≥4或x≤-5.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

1.已知a、b互为相反数,c、d互为倒数,x的绝对值为2,求cd+3a+3b-|x|.

查看答案和解析>>

同步练习册答案