【题目】一个不透明的口袋内装有四张完全相同的卡片,分别标有数字1、2、3、4。
(1)若任取一张卡片,上面所标数字是不小于3的概率为;
(2)在口袋中任取两张卡片:请你利用树状图或列表法求出这两张卡片上的数字的积为奇数的概率。
【答案】
(1)
(2)解:如图:
∵所有等可能性结果有12种,其中两张卡片上的数字的积为奇数的结果有2种,
∴P= .
【解析】解:(1)∵一不透明的口袋内装有四张完全相同的卡片,分别标有数字1、2、3、4,
∴任取一张卡片的可能结果有4种情况,
∴上面所标数字不小于3的结果有2种情况,
∴上面所标数字不小于3的概率为:=.
所以答案是:.
【考点精析】利用列表法与树状图法和概率公式对题目进行判断即可得到答案,需要熟知当一次试验要设计三个或更多的因素时,用列表法就不方便了,为了不重不漏地列出所有可能的结果,通常采用树状图法求概率;一般地,如果在一次试验中,有n种可能的结果,并且它们发生的可能性都相等,事件A包含其中的m中结果,那么事件A发生的概率为P(A)=m/n.
科目:初中数学 来源: 题型:
【题目】一个不透明的口袋中装有若干个红、黄、蓝、绿四种颜色的小球,小球除颜色外完全相同,为估计该口袋中四种颜色的小球数量,每次从口袋中随机摸出一球记下颜色并放回,重复多次试验,汇总实验结果绘制成如下不完整的条形统计图和扇形统计图.
根据以上信息解答下列问题:
(1)求实验总次数,并补全条形统计图;
(2)扇形统计图中,摸到黄色小球次数所在扇形的圆心角度数为多少度?
(3)已知该口袋中有10个红球,请你根据实验结果估计口袋中绿球的数量.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D在AB上,在下列四个条件中:①∠ACD=∠B;②∠ADC=∠ACB;③AC2=ADAB;④ABCD=ADCB,能满足△ADC与△ACB相似的条件是( )
A.①、②、③ B.①、③、④ C.②、③、④ D.①、②、④
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC,∠C=90°,∠ABC=40°,按以下步骤作图:
①以点A为圆心,小于AC的长为半径.画弧,分别交AB、AC于点E、F;
②分别以点E、F为圆心,大于EF的长为半径画弧,两弧相交于点G;
③作射线AG,交BC边于点D,则∠ADC的度数为________.
【答案】65°
【解析】由题意可知,所作的射线AG是∠BAC的角平分线.
∵在△ABC中,∠C=90°,∠ABC=40°,
∴∠BAC=180°-90°-40°=50°,
∴∠CAD=∠BAC=25°,
∴∠ADC=180°-90°-25°=65°.
【题型】填空题
【结束】
13
【题目】如图所示,已知线段AB,∠α,∠β,分别过A、B作∠CAB=∠α,∠CBA=∠β.(不写作法,保留作图痕迹)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC,∠A=36°,BD平分∠ABC交AC于点D.求证:AD=BC
证明:∵AB=AC
∴∠ABC=∠C ( )
∵∠A=36°
又∵∠A+∠ABC+∠C=180° ( )
∴∠ABC= °
∵BD平分∠ABC
∴∠1=∠2= °
∴∠C=∠ =72°
∴AD= ,BC= ( )
∴AD=BC
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】认真阅读下面关于三角形内外角平分线所夹角的探究片段,完成所提出的问题.
(1)如图1,在△ABC中,O是∠ABC与∠ACB的平分线BO和CO的交点,试证明∠BOC=90°+
(2)如图2中,O是∠ABC与外角∠ACD的平分线BO和CO的交点,试分析∠BOC与∠A有怎样的关系?请说明理由.
(3)如图3中,O是外角∠DBC与外角∠ECB的平分线BO和CO的交点,则∠BOC与∠A有怎样的关系?(只写结论,不需证明)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(知识生成)我们已经知道,通过计算几何图形的面积可以表示一些代数恒等式.例如图1可以得到(a+b)2=a2+2ab+b2,基于此,请解答下列问题:
(1)根据图2,写出一个代数恒等式: .
(2)利用(1)中得到的结论,解决下面的问题:若a+b+c=10,ab+ac+bc=35,则a2+b2+c2= .
(3)小明同学用图3中x张边长为a的正方形,y张边长为b的正方形,z张宽、长分别为a、b的长方形纸片拼出一个面积为(2a+b)(a+2b)长方形,则x+y+z= .
(知识迁移)(4)事实上,通过计算几何图形的体积也可以表示一些代数恒等式,图4表示的是一个边长为x的正方体挖去一个小长方体后重新拼成一个新长方体,请你根据图4中图形的变化关系,写出一个代数恒等式: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数 y=ax2+bx+c(a<0) 的图象经过点(2,0),且其对称轴为直线 x=1 ,则使函数值 y>0 成立的 x 的取值范围是( )
A.x<4 或 x>2
B.4 ≤ x ≤ 2
C.x ≤ 4 或 x ≥ 2
D.4<x<2
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com