精英家教网 > 初中数学 > 题目详情

【题目】“阅读素养的培养是构建核心素养的重要基础,重庆十一中学校以‘大阅读’特色课程实施为突破口,着力提升学生的核心素养.”全校师生积极响应和配合,开展各种活动丰富其课余生活.在数学兴趣小组中,同学们从书上认识了很多有趣的数.其中有一个“和平数”引起了同学们的兴趣.描述如下:一个四位数,记千位上和百位上的数字之和为x,十位上和个位上的数字之和为y,如果,那么称这个四位数为“和平数”.

例如:1423,因为,所以1423是“和平数”.

1)直接写出:最小的“和平数”是________,最大的“和平数”是__________

2)求同时满足下列条件的所有“和平数”:

①个位上的数字是千位上的数字的两倍;

②百位上的数字与十位上的数字之和是12的倍数;

3)将一个“和平数”的个位上与十位上的数字交换位置,同时,将百位上与千位上的数字交换位置,称交换前后这两个“和平数”为“相关和平数”.

例如:14234132为“相关和平数”

求证:任意的两个“相关和平数”之和是1111的倍数.

【答案】110019999;(227544848;(3)见解析

【解析】

1)根据“和平数”的定义可直接得出最小的“和平数”是1001,最大的“和平数”是9999

2)设这个“和平数”的千位数字是a,百位数字是m,十位数字是n,其中amn均是正整数且,则个位数字是2a,又由得到a的可能取值为1234;根据百位上的数字与十位上的数字之和是12的倍数,可知m+n=12,得到,由a的可能取值可得m的取值,即可求得符合条件的“和平数”;

3)设任意一个“和平数”千位数字为a,百位数字为b,十位数字为c,个位数字为d,则它的“相关和平数”千位数字为b,百位数字为a,十位数字为d,个位数字为c,计算它们的和,根据“和平数”的定义可知a+b=c+d,因式分解可得原式= 1111(a+b),即可证明.

解:(1)根据“和平数”的定义可得:

最小的“和平数”1001,最大的“和平数”9999

故答案为10019999

2)设这个“和平数”的千位数字是a,百位数字是m,十位数字是n,其中amn均是正整数且

则个位数字是2a

又∵

a的可能取值为1234

∵百位上的数字与十位上的数字之和是12的倍数,

m+n=0m+n=12

∵“和平数”中a+m=n+2a

m+n=0时,即m=n=0,则此时a=0,不符合题意,

m+n=12

a+m=12m+2a,解得:

a的可能取值为1234;且m为正整数,

m的可能取值为78

a=2时,m=7,这个“和平数”是2754

a=4时,m=8,这个“和平数”是4848

综上所述,满足条件的“和平数”是27544848

3)设任意一个“和平数”千位数字为a,百位数字为b,十位数字为c,个位数字为d,则它的“相关和平数”千位数字为b,百位数字为a,十位数字为d,个位数字为c

由“和平数”的定义可知:a+b=c+d

∴原式

ab为正整数,则能被1111整除,

能被1111整除,

∴任意的两个“相关和平数”之和是1111的倍数.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,二次函数y=x2+2x+c的图象与x轴交于点A和点B10),以AB为边在x轴上方作正方形ABCD,动点P从点A出发,以每秒2个单位长度的速度沿x轴的正方向匀速运动,同时动点Q从点C出发,以每秒1个单位长度的速度沿CB匀速运动,当点Q到达终点B时,点P停止运动,设运动时间为t秒.连接DP,过点PDP的垂线与y轴交于点E

1)求二次函数的解析式及点A的坐标;

2)当点P在线段AO(点P不与AO重合)上运动至何处时,线段OE的长有最大值,并求出这个最大值;

3)在PQ运动过程中,求当DPE与以DCQ为顶点的三角形相似时t的值;

4)是否存在t,使DCQ沿DQ翻折得到DC′Q,点C′恰好落在抛物线的对称轴上?若存在,请求出t的值;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了加强对校内外的安全监控,创建平安校园,某学校计划增加台监控摄像设备,现有甲、乙两种型号的设备,其中每台价格、有效监控半径如表所示,经调查,购买台甲型设备比购买台乙型设备少元,购买台甲型设备比购买台乙型设备多.

甲型

乙型

价格(元/台)

有效半径(米/台)

)求的值;

)若购买该批设备的资金不超过元,且两种型号的设备均要至少买一台,学校有哪几种购买方案?

)在()的条件下,若要求监控半径覆盖范围不低于米,为了节约资金,请你设计一种最省钱的购买方案.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级八个班共有280名学生,男女生人数大致相同,调查小组为调查学生的体质健康水平,开展了一次调查研究,请将下面的过程补全.

收集数据:

(1)调查小组计划选取40名学生的体质健康测试成绩作为样本,下面的取样方法中,合理的是___________(填字母);

A.抽取九年级1班、2班各20名学生的体质健康测试成绩组成样本

B.抽取各班体育成绩较好的学生共40名学生的体质健康测试成绩组成样本

C.从年级中按学号随机选取男女生各20名学生学生的体质健康测试成绩组成样本

整理、描述数据:

抽样方法确定后,调查小组获得了40名学生的体质健康测试成绩如下:

77 83 80 64 86 90 75 92 83 81

85 86 88 62 65 86 97 96 82 73

86 84 89 86 92 73 57 77 87 82

91 81 86 71 53 72 90 76 68 78

整理数据,如下表所示:

2018年九年级部分学生学生的体质健康测试成绩统计表

1

1

2

2

4

5

5

2

分析数据、得出结论

调查小组将统计后的数据与去年同期九年级的学生的体质健康测试成绩(直方图)进行了对比,

(2)你能从中得到的结论是_____________,你的理由是________________________________.

(3)体育老师计划根据2018年的统计数据安排75分以下的同学参加体质加强训练项目,则全年级约有________名同学参加此项目.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知等腰RtABCACB=90°CA=CB,以BC为边向外作等边CBA,连接AD,过点C作∠ACB的角平分线与AD交于点E,连接BE

1)若AE=2,求CE的长度;

2)以AB为边向下作AFBAFB=60°,连接FE,求证:FA+FB= FE

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,矩形ABCD中,AB=4AD=3,把矩形沿直线AC折叠,使点B落在点E处,AECD于点F,连接DE

1)求证:△DEC≌△EDA

2)求DF的值;

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,顶点为P(4,4)的二次函数图象经过原点(0,0),点A在该图象上,OA交其对称轴l于点M,点M、N关于点P对称,连接AN、ON.

(1)求该二次函数的关系式

(2)若点A的坐标是(6,3),求△ANO的面积

(3)当点A在对称轴l右侧的二次函数图象上运动,请解答下问题:

①证明:∠ANM∠ONM

②△ANO能否为直角三角形?如果能,请求出所有符合条件的点A的坐标如果不能,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知ABC三个顶点的坐标分别是A(-2,3),B(-3,-1),C(-1,1)

(1)画出ABC绕点O逆时针旋转90°后的A1B1C1,并写出点A1的坐标;

(2)画出ABC绕点O逆时针旋转180°后的A2B2C2,并写出点A2的坐标;

(3)直接回答:AOB与A2OB2有什么关系?

【答案】(1)作图见解析,(-4,-2);(2)作图见解析,(2,-3);(3)相等.

【解析】

试题分析:(1)根据旋转的性质作图,写出点的坐标;

根据旋转的性质作图,写出点的坐标;

(3)根据旋转的性质得出结论.

试题解析:(1)作图如下,点A1的坐标(-4,-2).

(2)作图如下,点A2的坐标(2,-3).

(3)相等.

考点:1.旋转作图;2.旋转的性质.

型】解答
束】
20

【题目】已知函数y=m﹣2xm2+m-4 +2x﹣1是一个二次函数,求该二次函数的解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,已知ABBCCA4cmADBCD,点PQ分别从BC两点同时出发,其中点P沿BC向终点C运动,速度为1cm/s;点Q沿CAAB向终点B运动,速度为2cm/s,设它们运动的时间为x(s).

(1)x为何值时,PQAC

(2)设△PQD的面积为,当0x2时,求yx的函数关系式;

(3)0x2时,求证:AD平分△PQD的面积;

(4)探索以PQ为直径的圆与AC的位置关系,请写出相应位置关系的x的取值范围(不要求写出过程).

查看答案和解析>>

同步练习册答案