【题目】如图,数轴上A、B、C三点表示的数分别为、、,且、满足.
(1)则= , = ;
(2)动点P从A点出发,以每秒10个单位的速度沿数轴向右运动,到达B点停留片刻后立即以每秒6个单位的速度沿数轴返回到A点,共用了6秒;其中从C到B,返回时从B到C(包括在B点停留的时间)共用了2秒.
①求C点表示的数;
②设运动时间为秒,求为何值时,点P到A、B、C三点的距离之和为23个单位?
【答案】(1)a=-8,b=12;(2)7;(3)1.2;1.8;3;4.
【解析】试题分析:(1)根据偶次方以及绝对值的非负性即可求出a、b的值;
(2)设AC=x,根据在AC上往返运动用时为6-2=4秒列方程求解即可;
(3)分4种情况进行分类讨论即可得解.
试题解析:(1)∵
∴a+8=0,b-12=0,
解得:a=-8,b=12;
(2)设AC=x,根据题意得:
,
解得x=15,
c=—8+15=7;
(3)①当P从A到B在AC上运动时,设t秒时,点P到A、B、C三点的距离之和为23个单位,根据题意得:
-8+10t+7-10+12-10t=23
解得:t=1.2
②当P从A到B在CB上运动时,设t秒时,点P到A、B、C三点的距离之和为23个单位,根据题意得:
10t+10t-7+12-10t=23
解得:t=1.8
同理可得:t=3或t=4.
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线 (a为常数,且a>0)与x轴从左至右依次交于A,B两点,与y轴交于点C,经过点B的直线与抛物线的另一交点为D,且点D的横坐标为﹣5.
(1)求抛物线的函数表达式;
(2)P为直线BD下方的抛物线上的一点,连接PD、PB, 求△PBD面积的最大值.
(3)设F为线段BD上一点(不含端点),连接AF,一动点M从点A出发,沿线段AF以每秒1个单位的速度运动到F,再沿线段FD以每秒2个单位的速度运动到D后停止,当点F的坐标是多少时,点M在整个运动过程中用时最少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,四边形ABCD是正方形,M是AB延长线上一点.直角三角尺的一条直角边经过点D,且直角顶点E在AB边上滑动(点E不与点A、B重合),另一直角边与∠CBM的平分线BF相交于点F.
(1)如图1,当点E在AB边得中点位置时:
①通过测量DE、EF的长度,猜想DE与EF满足的数量关系是 .
②连接点E与AD边的中点N,猜想NE与BF满足的数量关系是 ,请证明你的猜想.
(2)如图2,当点E在AB边上的任意位置时,猜想此时DE与EF有怎样的数量关系,并证明你的猜想.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将函数y=﹣3x的图象沿y轴向上平移2个单位长度后,所得图象对应的函数关系式为( )
A.y=﹣3x+2
B.y=﹣3x﹣2
C.y=﹣3(x+2)
D.y=﹣3(x﹣2)
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com