【题目】如图,在四边形ABCD中,∠ABC=30°,∠ADC=60°,AD=DC,连结AC、BD.在四边形ABCD的外部以BC为一边作等边△BCE,连结AE.
(1)求证:BD=AE;
(2)若AB=3,BC=4,求BD的长.
【答案】(1)证明见解析;(2)AE=5
【解析】试题分析:(1)由∠ADC=60°,AD=DC,易得△ADC是等边三角形,又由△BCE是等边三角形,可证得△BDC≌△EAC(SAS),即可得BD=AE;
(2)由△BCE是等边三角形,∠ABC=30°,易得∠ABE=90°,然后由勾股定理求得AE的长,即可求得BD的长.
试题解析:(1)∵在△ADC中,AD=DC,∠ADC=60°,
∴△ADC是等边三角形,
∴DC=AC,∠DCA=60°,
又∵△BCE是等边三角形,
∴CB=CE,∠BCE=60°,
∴∠DCA+∠ACB=∠ECB+∠ACB,
即∠DCB=∠ACE,
∴△BDC≌△EAC(SAS),
∴BD=AE;
(2)∵△BCE是等边三角形,
∴BE=BC=4,∠CBE=60°.
∵∠ABC=30°,
∴∠ABE=90°.
在Rt△ABE中,AE===5
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,点A、C分别在x轴上、y轴上,CB//OA,OA=8,若点B的坐标为(a,b),且b=.
(1)直接写出点A、B、C的坐标;
(2)若动点P从原点O出发沿x轴以每秒2个单位长度的速度向右运动,当直线PC把四边形OABC分成面积相等的两部分停止运动,求P点运动时间;
(3)在(2)的条件下,在y轴上是否存在一点Q,连接PQ,使三角形CPQ的面积与四边形OABC的面积相等?若存在,求点Q的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,BC=8cm,AC=6cm,点E是BC的中点,动点P从A点出发,先以每秒2cm的速度沿A→C运动,然后以1cm/s的速度沿C→B运动.若设点P运动的时间是t秒,那么当t=_____________,△APE的面积等于6.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设, ,……, ,(n为正整数)
(1)试说明是8的倍数;
(2)若△ABC的三条边长分别为、、(为正整数)
①求的取值范围.
②是否存在这样的,使得△ABC的周长为一个完全平方数,若存在,试举出一例,若不存在,说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:在△ABC中,AC=BC, ,过点C作CD⊥AB于点D,点E是AB边上一动点(不同于点A、B),连接CE,过点B作CE的垂线交直线CE于点F,交直线CD于点G(如图1).
(1)求证:BG=CE;
(2)若点E运动到线段BD上时(如图2),试猜想BG、CE的数量关系是否发生变化?请直接写出你的结论;
(3)过点A作AH垂直于直线CE垂足为点H并交CD的延长线于点M(如图3),找出图中与BE相等的线段,并证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,在平面直角坐标系中,二次函数y=﹣x2+bx+c的图象与坐标轴交于A,B,C三点,其中点A的坐标为(﹣3,0),点B的坐标为(4,0),连接AC,BC.动点P从点A出发,在线段AC上以每秒1个单位长度的速度向点C作匀速运动;同时,动点Q从点O出发,在线段OB上以每秒1个单位长度的速度向点B作匀速运动,当其中一点到达终点时,另一点随之停止运动,设运动时间为t秒.连接PQ.
(1)填空:b= ,c= ;
(2)在点P,Q运动过程中,△APQ可能是直角三角形吗?请说明理由;
(3)在x轴下方,该二次函数的图象上是否存在点M,使△PQM是以点P为直角顶点的等腰直角三角形?若存在,请求出运动时间t;若不存在,请说明理由;
(4)如图②,点N的坐标为(﹣,0),线段PQ的中点为H,连接NH,当点Q关于直线NH的对称点Q′恰好落在线段BC上时,请直接写出点Q′的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在校园艺术节活动中,参加摄影大赛的作品共有98件,比上届参赛作品增加了40%,则上届参赛作品有( )
A.39件B.60件C.70件D.71件
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架2.5米长的梯子斜立在竖直的墙上,此时梯足B距底端O为0.7米。(1)求OA的长度。(2)如果梯子顶端下滑0.4米,则梯子将滑出多少米?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com