【题目】如图,在四边形ABCD中,AB=AD,AC是∠BAD的角平分线.
(1)求证:△ABC≌△ADC.
(2)若∠BCD=60°,AC=BC,求∠ADB的度数.
【答案】(1)详见解析;(2)∠ADB=15°.
【解析】
(1)根据角平分线的性质可得∠DAC=∠BAC,从而利用SAS,可判定全等.
(2)根据△ABC≌△ADC.可知BC=DC,∠ACB=∠ACD=30°,已知∠BCD=60°,故△BCD是等边三角形.即∠CBD=60°,在△ABC中AC=BC,∠ACB=30°,可得∠CDA=75°,进而求得∠ADB=15°.
解(1)∵AC是∠BAD的角平分线.
∴∠BAC=∠DAC,
∵AB=AD,AC=AC,
∴△ABC≌△ADC.
(2)∵△ABC≌△ADC.
∴BC=DC,∠ACB=∠ACD=30°,
∵∠BCD=60°,
∴△BCD是等边三角形.
∴∠CBD=60°,
∵AC=BC,
∴∠CDA=75°,
∴∠ADB=15°.
科目:初中数学 来源: 题型:
【题目】已知矩形ABCD的一条边AD=8,将矩形ABCD折叠,使得顶点B落在CD边上的P点处.如图,已知折痕与边BC交于点O,连结AP、OP、OA.
(1)求证:△OCP∽△PDA;
(2)若tan∠PAO=,求边AB的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,四边形ABCD内接于⊙O,点O在AB上,BC=CD,过点C作⊙O的切线,分别交AB,AD的延长线于点E,F.
(1)求证:AF⊥EF;(2)若cosA=,BE=1,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,∠ABC=90°,AC=AD,M,N分别为AC,CD的中点,连接BM,MN,BN.∠BAD=60°,AC平分∠BAD,AC=2,BN的长为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】设抛物线F的解析式为:y=2x2﹣4nx+2n2+n,n为实数.
(1)求抛物线F顶点的坐标(用n表示),并证明:当n变化时顶点在一条定直线l上;
(2)如图,射线m是(1)中直线l与x轴正半轴夹角的平分线,点M,N都在射线m上,作MA⊥x轴、NB⊥x轴,垂足分别为点A、点B(点A在点B左侧),当MA+NB=MN时,试判断是否为定值,若是,请求出定值;若不是,说明理由.
(3)已知直线y=kx+b与抛物线F中任意一条都相截,且截得的长度都为,求这条直线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在Rt△ABC中,∠ACB=90°,AB=5,过点B作BD⊥AB,点C,D都在AB上方,AD交△BCD的外接圆⊙O于点E.
(1)求证:∠CAB=∠AEC.
(2)若BC=3.
①EC∥BD,求AE的长.
②若△BDC为直角三角形,求所有满足条件的BD的长.
(3)若BC=EC= ,则= .(直接写出结果即可)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在四边形ABCD中,AC平分∠BAD,∠ABC=90°,AC=AD=2,M、N分别为AC、CD的中点,连接BM、MN、BN.
(1)求证:BM=MA;
(2)若∠BAD=60°,求BN的长;
(3)当∠BAD= °时,BN=1.(直接填空)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了提高学生的身体素质,某班级决定开展球类活动,要求每个学生必须在篮球、足球、排球、乒乓球、羽毛球中选择一项参加训练(只选择一项),根据学生的报名情况制成如下统计表:
项目 | 篮球 | 足球 | 排球 | 乒乓球 | 羽毛球 |
报名人数 | 12 | 8 | 4 | a | 10 |
占总人数的百分比 | 24% | b |
(1)该班学生的总人数为 人;
(2)由表中的数据可知:a= ,b= ;
(3)报名参加排球训练的四个人为两男(分别记为A、B)两女(分别记为C、D),现要随机在这4人中选2人参加学校组织的校级训练,请用列表或树状图的方法求出刚好选中一男一女的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某服装公司招工广告承诺:熟练工人每月工资至少3000元.每天工作8小时,一个月工作25天.月工资底薪800元,另加计件工资.加工1件A型服装计酬16元,加工1件B型服装计酬12元.在工作中发现一名熟练工加工1件A型服装和2件B型服装需4小时,加工3件A型服装和1件B型服装需7小时.(工人月工资=底薪+计件工资)
(1)一名熟练工加工1件A型服装和1件B型服装各需要多少小时?
(2)一段时间后,公司规定:“每名工人每月必须加工A,B两种型号的服装,且加工A型服装数量不少于B型服装的一半”.设一名熟练工人每月加工A型服装a件,工资总额为W元.请你运用所学知识判断该公司在执行规定后是否违背了广告承诺?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com