【题目】如图,将一个长方形放置在平面直角坐标系中,,点是的中点,反比例函数图像过点且和相交于点.
(1)求直线和反比例函数的解析式;
(2)求四边形的面积.
【答案】(1)直线OB的解析式是y=x.反比例函数的解析式是y=;(2)3.
【解析】
(1)根据OA=2,OC=3,得到点B的坐标,再进一步运用待定系数法求直线OB的解析式,根据E是AB的中点,求得点E的坐标,再进一步运用待定系数法求得反比例函数的解析式;
(2)根据反比例函数的解析式求得点F的横坐标,再进一步根据四边形的面积等于矩形的面积减去两个直角三角形的面积进行计算.
(1)由题意得B(2,3),E(2,),
设直线OB的解析式是y=k1x,
把B点坐标代入,得k1=,
则直线OB的解析式是y=x.
设反比例函数解析式是y=,
把E点坐标代入,得k2=3,
则反比例函数的解析式是y=;
(2)由题意得Fy=3,代入y=,
得Fx=1,即F(1,3).
则四边形OEBF的面积=矩形OABC的面积-△OAE的面积-△OCF的面积=6-3=3.
科目:初中数学 来源: 题型:
【题目】如图,五边形ABCDE中,∠A=140°,∠B=120°,∠E=90°,CP和DP分别是∠BCD、∠EDC的外角平分线,且相交于点P,则∠CPD=__________°.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知A(–4,n),B(2,–4)是一次函数y=kx+b的图象和反比例函数的图象的两个交点.
(1)求反比例函数和一次函数的解析式;
(2)求直线AB与x轴的交点C的坐标及△AOB的面积;
(3)求不等式的解集(请直接写出答案).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,直线y=k1x(x≥0)与双曲线y= (x>0)相交于点P(2,4).已知点A(4,0),B(0,3),连接AB,将Rt△AOB沿OP方向平移,使点O移动到点P,得到△A′PB′.过点A′作A′C∥y轴交双曲线于点C,连接CP.
(1)求k1与k2的值;
(2)求直线PC的解析式;
(3)直接写出线段AB扫过的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠AOB=90°,将三角尺的直角顶点P落在∠AOB的平分线OC的任意一点上,使三角尺的两条直角边与∠AOB的两边分别相交于点E、F。证明:PE=PF。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,给出五个等量关系:①AD=BC;②AC=BD;③CE=DE;④∠D=∠C;⑤∠DAB=∠CBA.
请你以其中两个为条件,另外三个中的一个为结论,推出一个正确的结论(只需写出一种情况),并加以证明.
已知:
求证:
证明:
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com