精英家教网 > 初中数学 > 题目详情

【题目】如图,点P是矩形ABCD的边AD上的一动点,矩形的两条边AB、BC的长分别是6和8,则点P到矩形的两条对角线AC和BD的距离之和是(  )

A.4.8
B.5
C.6
D.7.2

【答案】A
【解析】解:连接OP,
∵矩形的两条边AB、BC的长分别为6和8,
∴S矩形ABCD=ABBC=48,OA=OC,OB=OD,AC=BD=10,
∴OA=OD=5,
∴SACD= S矩形ABCD=24,∴SAOD= SACD=12,∵SAOD=SAOP+SDOP= OAPE+ ODPF= ×5×PE+ ×5×PF= (PE+PF)=12,
解得:PE+PF=4.8.
故选:A.

【考点精析】通过灵活运用三角形的面积和矩形的性质,掌握三角形的面积=1/2×底×高;矩形的四个角都是直角,矩形的对角线相等即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图A在数轴上所对应的数为﹣2

1)点B在点A右边距A4个单位长度,求点B所对应的数;

2)在(1)的条件下,点A以每秒2个单位长度沿数轴向左运动,点 B 以每秒2个单位长度沿数轴向右运动,当点A运动到﹣6所在的点处时,求AB两点间距离.

3)在2)的条件下,现A点静止不动,B点再以每秒2个单位长度沿数轴向左运动时,经过多长时间AB两点相距4个单位长度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知一次函数y1=2x-3,y2=-x+6在同一直角坐标系中的图象如图所示,它们的交点坐标为C(3,3).

(1)根据图象指出x为何值时,y1>y2;x为何值时,y1<y2.

(2)求这两条直线与x轴所围成的ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】“古诗送郎从军:送郎一路雨飞池,十里江亭折柳枝;离人远影疾行去,归来梦醒度相思.”中,如果用纵轴y表示从军者与送别者行进中离原地的距离,用横轴x表示送别进行的时间,从军者的图象为O→A→B→C,送别者的图象为O→A→B→D,那么下面的图象与上述诗的含义大致吻合的是(  )

A. B. C. D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y=﹣x+8与x轴、y轴分别相交于点A、B,设M是OB上一点,若将ABM沿AM折叠,使点B恰好落在x轴上的点B′处.求:

(1)点B′的坐标;

(2)直线AM所对应的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,∠1+∠2=180°,∠B=∠D.说明ABCD的理由.

补全下面的说理过程,并在括号内填上适当的理由

解:∵∠1+∠2=180°(已知)

∠2=∠AHB   

   (等量代换)

DEBF   

∴∠D=∠      

∵∠   =∠B(等量代换)

ABCD   

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图1,ABC是等腰直角三角形,∠BAC=90°,DE是经过点A的直线,作BDDE,CEDE,

(1)求证:DE=BD+CE.

(2)如果是如图2这个图形,我们能得到什么结论?并证明.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图所示,延长△ABC的各边,使得BF=AC,AE=CD=AB,连结DE,EF,FD,得到△DEF为等边三角形.

求证:(1)△AEF≌△CDE;

(2)△ABC为等边三角形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】请根据图中提供的信息,回答下列问题

(1)一个暖瓶与一个水杯分别是多少元?

(2)甲、乙两家商场同时出售同样的暖瓶和水杯,为了迎接新年,两家商场都在搞促销活动,甲商场规定: 这两种商品都打九折乙商场规定:买一个暖瓶赠送一个水杯。若某单位想要买4个暖瓶和15个水杯,请问选择哪家商场购买更合算,并说明理由.

查看答案和解析>>

同步练习册答案