精英家教网 > 初中数学 > 题目详情

【题目】如图,以线段AB为直径作⊙O,CD与⊙O相切于点E,交AB的延长线于点D,连接BE,过点O作OC∥BE交切线DE于点C,连接AC.

(1)求证:AC是⊙O的切线;
(2)若BD=OB=4,求弦AE的长.

【答案】
(1)

证明:连接OE,

∵CD与圆O相切,

∴OE⊥CD,

∴∠CEO=90°,

∵BE∥OC,

∴∠AOC=∠OBE,∠COE=∠OEB,

∵OB=OE,

∴∠OBE=∠OEB,

∴∠AOC=∠COE,

在△AOC和△EOC中,

∴△AOC≌△EOC(SAS),

∴∠CAO=∠CEO=90°,

则AC与圆O相切;


(2)

解:在Rt△DEO中,BD=OB,

∴BE=OD=OB=4,

∵OB=OE,

∴△BOE为等边三角形,

∴∠ABE=60°,

∵AB为圆O的直径,

∴∠AEB=90°,

∴AE=BEtan60°=


【解析】(1)连接OE,根据CD与圆O相切,利用切线的性质得到OE垂直于CD,再由OC与BE平行,得到同位角相等与内错角相等,根据OB=OE,利用等边对等角得到一对角相等,等量代换得到夹角相等,再由OA=OE,OC=OC,利用SAS得到三角形AOC与三角形EOC全等,利用全等三角形对应角相等得到∠OAC=∠OEC=90°,即可得证;
(2)根据题意得到EB为直角三角形斜边上的中线,求出EB的长,再由OE=OB=EB得到三角形OEB为等边三角形,求出∠ABE=60°,根据AB为圆O直径,利用直径所对的圆周角为直角得到三角形AEB为直角三角形,利用锐角三角函数定义求出AE的长即可.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】抛物线y=ax2+bx+3(a≠0)过A(4,4),B (2,m)两点,点B到抛物线对称轴的距离记为d,满足0<d≤1,则实数m的取值范围是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲经销商库存有1200套A品牌服装,每套进价400元,每套售价500元,一年内可卖完,现市场流行B品牌服装,每套进价300元,每套售价600元,但一年内只允许经销商一次性订购B品牌服装,一年内B品牌服装销售无积压,因甲经销商无流动资金可用,只有低价转让A品牌服装,用转让来的资金购进B品牌服装,并销售,经与乙经销商协商,甲、乙双方达成转让协议,转让价格y(元/套)与转让数量x(套)之间的函数关系式为y=﹣x+360(100≤x≤1200),若甲经销商转让x套A品牌服装,一年内所获总利润为W(元).
(1)求转让后剩余的A品牌服装的销售款Q1(元)与x(套)之间的函数关系式;
(2)求B品牌服装的销售款Q2(元)与x(套)之间的函数关系式;
(3)求W(元)与x(套)之间的函数关系式,并求W的最大值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】质地均匀的小正方体,六个面分别有数字“1”、“2”、“3”、“4”、“5”、“6”,同时投掷两枚,观察朝上一面的数字.
(1)求数字“1”出现的概率;
(2)求两个数字之和为偶数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】将一副三角尺按如图方式进行摆放,∠1、∠2不一定互补的是(  )
A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线y=ax2+bx+c与x轴交于点A、B,与直线AC:y=﹣x﹣6交y轴于点C,点D是抛物线的顶点,且横坐标为﹣2.

(1)求出抛物线的解析式.
(2)判断△ACD的形状,并说明理由.
(3)直线AD交y轴于点F,在线段AD上是否存在一点P,使∠ADC=∠PCF?若存在,直接写出点P的坐标;若不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:一次函数y=﹣2x+10的图象与反比例函数(k>0)的图象相交于A,B两点(A在B的右侧).

(1)当A(4,2)时,求反比例函数的解析式及B点的坐标;
(2)在1的条件下,反比例函数图象的另一支上是否存在一点P,使△PAB是以AB为直角边的直角三角形?若存在,求出所有符合条件的点P的坐标;若不存在,请说明理由.
(3)当A(a,﹣2a+10),B(b,﹣2b+10)时,直线OA与此反比例函数图象的另一支交于另一点C,连接BC交y轴于点D.若,求△ABC的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,以点B(0,8)为端点的射线BG∥x轴,点A是射线BG上一个动点(点A与点B不重合),在射线AG上取AD=OB,作线段AD的垂直平分线,垂足为E,且与x轴交于点F,过点A作AC⊥OA,交射线EF于点C,连接OC、CD.设点A的横坐标为t.

(1)用含t的式子表示点E的坐标为
(2)当t为何值时,∠OCD=180°?
(3)当点C与点F不重合时,设△OCF的面积为S,求S与t之间的函数解析式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线AM平行于射线BN,∠B=90°,AB=4,C是射线BN上的一个动点,连接AC,作CD⊥AC,且AC=2CD,过C作CE⊥BN交AD于点E,设BC长为a.

(1)求△ACD的面积(用含a的代数式表示);
(2)求点D到射线BN的距离(用含有a的代数式表示);
(3)是否存在点C,使△ACE是以AE为腰的等腰三角形?若存在,请求出此时a的值;若不存在,请说明理由.

查看答案和解析>>

同步练习册答案