【题目】如图,矩形的对角线交于点O,已知则下列结论错误的是( )
A.B.
C.D.
【答案】C
【解析】
根据矩形的性质得出∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,AB=DC,再解直角三角形判定各项即可.
选项A,∵四边形ABCD是矩形,
∴∠ABC=∠DCB=90°,AC=BD,AO=CO,BO=DO,
∴AO=OB=CO=DO,
∴∠DBC=∠ACB,
∴由三角形内角和定理得:∠BAC=∠BDC=∠α,
选项A正确;
选项B,在Rt△ABC中,tanα=,
即BC=mtanα,
选项B正确;
选项C,在Rt△ABC中,AC=,即AO=,
选项C错误;
选项D,∵四边形ABCD是矩形,
∴DC=AB=m,
∵∠BAC=∠BDC=α,
∴在Rt△DCB中,BD=,
选项D正确.
故选C.
科目:初中数学 来源: 题型:
【题目】已知:如图,平行四边形 ABCD中,O是CD的中点,连接AO并延长,交BC的延长线于点E.
(1)求证:△AOD ≌ △EOC;
(2)连接AC,DE,当∠B∠AEB _______ °时,四边形ACED是正方形?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,矩形OABC的顶点A、C分别在x、y轴的正半轴上,顶点B的坐标为(4,2)点M是边BC上的一个动点(不与B、C重合),反比例函数 (k>0,x>0)的图象经过点M且与边AB交于点N,连接MN.
(1)当点M是边BC的中点时,求反比例函数的表达式;
(2)在点M的运动过程中,试证明:是一个定值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O在AC上,以OA为半径的⊙O交AB于点D,BD的垂直平分线交BC于点E,交BD于点F,连接DE.
(1)判断直线DE与⊙O的位置关系,并说明理由;
(2)若AC=6,BC=8,OA=2,求线段DE的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在中,以O为圆心,OA为半径的圆与BC相切与点B,与OC相交于点D.
(1)求的度数.
(2)如图,点E在⊙O上,连接CE与⊙O交于点F,若,求的度数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图:图象①②③均是以P0为圆心,1个单位长度为半径的扇形,将图形①②③分别沿东北,正南,西北方向同时平移,每次移动一个单位长度,第一次移动后图形①②③的圆心依次为P1P2P3,第二次移动后图形①②③的圆心依次为P4P5P6…,依此规律,P0P2018=_____个单位长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】现有甲骑电瓶车,乙骑自行车从湖州西山漾公园丝绸小镇门口出发沿同一路线匀速前往太湖龙之梦乐园.设乙行驶的时间为x(h),甲、乙两人距出发点的路程S甲、S乙关于x的函数图像如图①所示;甲、乙两人之间的路程差y关于x的函数图像如图②所示:
请你解决以下问题
(1)甲的速度是_____km/h;乙的速度是______km/h;
(2)对比图①、②可知:a=______;b=_____.
(3)乙出发多少时间,甲、乙两人路程差为7.5km?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某企业生产一种节能产品,投放市场供不应求.若该企业每月的产量保持在一定的范围,每套产品的生产成本不高于50万元,每套产品的售价不低于120万元.已知这种产品的月产量(套)与每套的售价(万元)之间满足关系式,月产量(套)与生产总成本(万元)存在如图所示的函数关系.
(1)直接写出与之间的函数关系式;
(2)求月产量的取值范围;
(3)当月产量(套)为多少时,这种产品的利润(万元)最大?最大利润是多少?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com