分析 先根据三角形内角和定理求出∠CAD=180°-∠ODB-∠ACD=90°,解Rt△ACD,得出AD=AC•tan∠ACD=2米,CD=2AD=3米,再证明△BOD是等边三角形,得到BD=OD=OA+AD=7米,然后根据BC=BD-CD即可求出浮漂B与河堤下端C之间的距离.
解答 解:∵AO的倾斜角是60°,
∴∠ODB=60°.
∵∠ACD=30°,
∴∠CAD=180°-∠ODB-∠ACD=90°.
在Rt△ACD中,AD=AC•tan∠ACD=2$\sqrt{3}$×$\frac{\sqrt{3}}{3}$=2(米),
∴CD=2AD=4米,
又∵∠O=60°,
∴△BOD是等边三角形,
∴BD=OD=OA+AD=2+5=7(米),
∴BC=BD-CD=7-4=3(米).
答:浮漂B与河堤下端C之间的距离为3米.
点评 本题考查了解直角三角形的应用,解答本题的关键是根据所给的倾斜角构造直角三角形,利用三角函数的知识求解.
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
| 销售单价 x(元) | 16 | 18 | 20 | 22 |
| 年销售量y(万件) | 5 | 4 | 3 | 2 |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com