分析 根据角平分线的定义可得∠CAD=∠BAD,再根据两直线平行,内错角相等可得∠CAD=∠ADE,然后求出∠ADE=∠BAD,根据等角对等边可得AE=DE,然后根据等角的余角相等求出∠ABD=∠BDE,根据等角对等边可得DE=BE,从而得到DE=$\frac{1}{2}$AB.
解答 解:∵AD是∠BAC的平分线,
∴∠CAD=∠BAD,
∵DE∥AC,
∴∠CAD=∠ADE,
∴∠ADE=∠BAD,
∴AE=DE,
∵BD⊥AD,
∴∠ADE+∠BDE=∠BAD+∠ABD=90°,
∴∠ABD=∠BDE,
∴DE=BE,
∴DE=$\frac{1}{2}$AB,
∵AB=8,
∴DE=$\frac{1}{2}$×8=4.
故答案为:4.
点评 本题考查了角平分线的定义,平行线的性质,等腰三角形的判定与性质,以及等角的余角相等的性质,熟记性质并准确识图,准确找出图中相等的角是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | AB=AC | B. | DB=EC | C. | ∠ADB=∠AEC | D. | ∠B=∠C |
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
科目:初中数学 来源: 题型:解答题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com