【题目】如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.
初步探究
(1)当AP=4时
①直接写出点E的坐标 ;
②求直线EF的函数表达式.
深入探究
(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.
拓展应用
(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.
【答案】(1)①(0,5);②;(2)理由见解析;(3)周长=16,不会发生变化,证明见解析.
【解析】
(1)①设:OE=PE=a,则AE=8﹣a,AP=4,在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,即可求解;
②证明△AOP≌△FRE(AAS),则ER=AP=4,故点F(8,1),即可求解;
(2)∠EOP=∠EPO,而∠EPH=∠EOC=90°,故∠EPH﹣∠EPO=∠EOC﹣∠EOP,即∠POC=∠OPH,又因为AB∥OC,故∠APO=∠POC,即可求解;
(3)证明△AOP≌△QOP(AAS)、△OCH≌△OQH(SAS),则CH=QH,即可求解.
(1)①设:OE=PE=a,则AE=8﹣a,AP=4,
在Rt△AEP中,由勾股定理得:PE2=AE2+AP2,
即a2=(8﹣a)2+16,解得:a=5,
故点E(0,5).
故答案为:(0,5);
②过点F作FR⊥y轴于点R,
折叠后点O落在P处,则点O、P关于直线EF对称,则OP⊥EF,
∴∠EFR+∠FER=90°,而∠FER+∠AOP=90°,
∴∠AOP=∠EFR,
而∠OAP=∠FRE,RF=AO,
∴△AOP≌△FRE(AAS),
∴ER=AP=4,
OR=EO﹣OR=5﹣4=1,故点F(8,1),
将点E、F的坐标代入一次函数表达式:y=kx+b
得:,解得:,
故直线EF的表达式为:y=﹣x+5;
(2)∵PE=OE,
∴∠EOP=∠EPO.
又∵∠EPH=∠EOC=90°,
∴∠EPH﹣∠EPO=∠EOC﹣∠EOP.
即∠POC=∠OPH.
又∵AB∥OC,
∴∠APO=∠POC,
∴∠APO=∠OPH;
(3)如图,过O作OQ⊥PH,垂足为Q.
由(1)知∠APO=∠OPH,
在△AOP和△QOP中,
∴△AOP≌△QOP(AAS),
∴AP=QP,AO=OQ.
又∵AO=OC,
∴OC=OQ.
又∵∠C=∠OQH=90°,OH=OH,
∴△OCH≌△OQH(SAS),
∴CH=QH,
∴△PHB的周长=PB+BH+PH=AP+PB+BH+HC=AB+CB=16.
故答案为:16.
科目:初中数学 来源: 题型:
【题目】甲、乙两同学玩“托球赛跑”游戏,商定:用球拍托乒乓球从起跑线1起跑,绕过点跑回到起跑线(如图示),途中乒乓球掉下来时须捡起并回到掉球处继续赛跑,结果:甲同学由于心急,掉了球,浪费了6秒钟,乙同学则顺利跑完;事后,甲同学说:“我俩所用的全部时间的和为50秒”,乙同学说“捡球过程不算在内时,甲的速度是我的1.2倍”根据图文信息,求出两人所用的时间.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等边三角形的顶点A(1,1)、B(3,1),规定把等边△ABC“先沿y轴翻折,再向下平移1个单位”为一次变换,如果这样连续经过2020次变换后,等边△ABC的顶点C的坐标为____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,AB=AC=2,∠B=36°,点D在线段BC上运动(点D不与点B、C重合),连接AD,作∠ADE=36°,DE交线段AC于点E.
(1)当∠BDA=128°时,∠EDC= ,∠AED= ;
(2)线段DC的长度为何值时,△ABD≌△DCE?请说明理由;
(3)在点D的运动过程中,△ADE的形状可以是等腰三角形吗?若可以,请直接写出∠BDA的度数;若不可以,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,一架长25米的梯子,斜靠在竖直的墙上,这时梯子底端离墙7米.
(1)此时梯子顶端离地面多少米?
(2)若梯子顶端下滑4米,那么梯子底端将向左滑动多少米?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+2与x轴相交于A(﹣1,0),B(4,0)两点,与y轴相交于点C.
(1)求抛物线的解析式;
(2)将△ABC绕AB中点M旋转180°,得到△BAD.
①求点D的坐标;
②判断四边形ADBC的形状,并说明理由;
(3)在该抛物线对称轴上是否存在点P,使△BMP与△BAD相似?若存在,请求出所有满足条件的P点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c与x轴交于点A(-1,0),顶点坐标(1,n)与y轴的交点在(0,2),(0,3)之间(包含端点),则下列结论:①3a+b<0;②-1≤a≤-;③对于任意实数m,a+b≥am2+bm总成立;④关于x的方程ax2+bx+c=n-1有两个不相等的实数根.其中结论正确的个数为( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图是一张月历表,在此月历表上用一个正方形任意圈出 2×2个数(如 1,2,8,9), 如果圈出的四个数中的最小数与最大数的积为 308,那么这四个数的和为( )
A.68B.72C.74D.76
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com