【题目】如图是一张月历表,在此月历表上用一个正方形任意圈出 2×2个数(如 1,2,8,9), 如果圈出的四个数中的最小数与最大数的积为 308,那么这四个数的和为( )
A.68B.72C.74D.76
科目:初中数学 来源: 题型:
【题目】如图,将一张边长为8的正方形纸片OABC放在直角坐标系中,使得OA与y轴重合,OC与x轴重合,点P为正方形AB边上的一点(不与点A、点B重合).将正方形纸片折叠,使点O落在P处,点C落在G处,PG交BC于H,折痕为EF.连接OP、OH.
初步探究
(1)当AP=4时
①直接写出点E的坐标 ;
②求直线EF的函数表达式.
深入探究
(2)当点P在边AB上移动时,∠APO与∠OPH的度数总是相等,请说明理由.
拓展应用
(3)当点P在边AB上移动时,△PBH的周长是否发生变化?并证明你的结论.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,为等腰三角形,,点在线段上(不与重合),以为腰长作等腰直角,于.
(1)求证:;
(2)连接交于,若,求的值.
(3)如图2,过作于的延长线于点,过点作交于,连接,当点在线段上运动时(不与重合),式子的值会变化吗?若不变,求出该值;若变化,请说明理由..
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+2x+c与x轴交A(﹣1,0),B两点,与y轴交于点C(0,3),抛物线的顶点为点E.
(1)求抛物线的解析式;
(2)经过B,C两点的直线交抛物线的对称轴于点D,点P为直线BC上方抛物线上的一个动点,当点P运动到点E时,求△PCD的面积;
(3)点N在抛物线对称轴上,点M在x轴上,是否存在这样的点M与点N,使以M,N,C,B为顶点的四边形是平行四边形?若存在,请直接写出点M的坐标(不写求解过程);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系xOy中,点A、B坐标分别为(4,2)、(0,2),线段CD在于x轴上,CD=,点C从原点出发沿x轴正方向以每秒1个单位长度向右平移,点D随着点C同时同速同方向运动,过点D作x轴的垂线交线段AB于点E、交OA于点G,连结CE交OA于点F.设运动时间为t,当E点到达A点时,停止所有运动.
(1)求线段CE的长;
(2)记S为RtΔCDE与ΔABO的重叠部分面积,试写出S关于t的函数关系式及t的取值范围;
(3)连结DF,
①当t取何值时,有?
②直接写出ΔCDF的外接圆与OA相切时t的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC 中,∠B=90°,AB=12 cm,BC=16 cm.点 P从点 A 开始沿 AB 边向点 B 以 1 cm/s的速度移动,点 Q从点 B开始沿 BC 边向点 C以 2 cm/s的速度移动.如果 P、 Q分别从 A、B同时出发,当一个点到达终点时,另一个点也随之停止运动.设运动的时间为 t秒.
(1)当 t 为何值时,△PBQ的面积等于 35cm2?
(2)当 t 为何值时,PQ的长度等8cm?
(3)若点 P,Q的速度保持不变,点 P在到达点 B后返回点 A,点 Q在到达点 C后返回点 B,一个点停止,另一个点也随之停止.问:当 t为何值时,△PCQ的面积等于 32cm2?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】朗读者自开播以来,以其厚重的文化底蕴和感人的人文情怀,感动了数以亿计的观众,岳池县某中学开展“朗读”比赛活动,九年级、班根据初赛成绩,各选出5名选手参加复赛,两个班各选出的5名选手的复赛成绩满分为100分如图所示.
平均数 | 中位数 | 众数 | |
九班 | 85 | 85 | |
九班 | 80 |
根据图示填写表格;
结合两班复赛成绩的平均数和中位数,分析哪个班级的复赛成绩较好;
如果规定成绩较稳定班级胜出,你认为哪个班级能胜出?说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知⊙O的半径为10,圆心O到弦AB的距离为5,则弦AB所对的圆周角的度数是( )
A. 30° B. 60° C. 30°或150° D. 60°或120°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】二次函数y=ax2+bx+c的图象如图所示,则下列式子中①abc<0;②0<b<-2a;③; ④a+b+c<0成立的个数有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com