精英家教网 > 初中数学 > 题目详情

【题目】如图①,△ABC中,∠ABC=45°,AH⊥BC于点H,点D在AH上,且DH=CH,连结BD.

(1)求证:BD=AC;
(2)将△BHD绕点H旋转,得到△EHF(点B,D分别与点E,F对应),连接AE.
①如图②,当点F落在AC上时,(F不与C重合),若BC=4,tanC=3,求AE的长;
②如图③,当△EHF是由△BHD绕点H逆时针旋转30°得到时,设射线CF与AE相交于点G,连接GH,试探究线段GH与EF之间满足的等量关系,并说明理由.

【答案】
(1)

证明:在Rt△AHB中,∠ABC=45°,

∴AH=BH,

在△BHD和△AHC中,

∴△BHD≌△AHC,

∴BD=AC,


(2)

解:①如图,

在Rt△AHC中,

∵tanC=3,

=3,

设CH=x,

∴BH=AH=3x,

∵BC=4,

∴3x+x=4,

∴x=1,

∴AH=3,CH=1,

由旋转知,∠EHF=∠BHD=∠AHC=90°,EH=AH=3,CH=DH=FH,

∴∠EHA=∠FHC,

∴△EHA≌△FHC,

∴∠EAH=∠C,

∴tan∠EAH=tanC=3,

过点H作HP⊥AE,

∴HP=3AP,AE=2AP,

在Rt△AHP中,AP2+HP2=AH2

∴AP2+(3AP)2=9,

∴AP=

∴AE=

②由①有,△AEH和△FHC都为等腰三角形,

∴∠GAH=∠HCG=90°,

∴△AGQ∽△CHQ,

∵∠AQC=∠GQE,

∴△AQC∽△GQH,

=sin30°=


【解析】(1)先判断出AH=BH,再判断出△BHD≌△AHC即可;(2)①先根据tanC=3,求出AH=3,CH=1,然后根据△EHA≌△FHC,得到,HP=3AP,AE=2AP,最后用勾股定理即可;②先判断出△AGQ∽△CHQ,得到 ,然后判断出△AQC∽△GQH,用相似比即可.此题是几何变换综合题,主要考查了旋转的性质,全等三角形的性质和判定,相似三角形的性质和判定,勾股定理,锐角三角函数的意义,等腰三角形的判定和性质,解本题的关键是相似三角形性质和判定的运用.
【考点精析】通过灵活运用勾股定理的概念和相似三角形的判定与性质,掌握直角三角形两直角边a、b的平方和等于斜边c的平方,即;a2+b2=c2;相似三角形的一切对应线段(对应高、对应中线、对应角平分线、外接圆半径、内切圆半径等)的比等于相似比;相似三角形周长的比等于相似比;相似三角形面积的比等于相似比的平方即可以解答此题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,四边形ABCD为正方形,点A的坐标为(0,1),点B的坐标为(0,﹣2),反比例函数y=的图象经过点C,一次函数y=ax+b的图象经过A、C两点.

(1)求反比例函数与一次函数的解析式;
(2)求反比例函数与一次函数的另一个交点M的坐标;
(3)若点P是反比例函数图象上的一点,△OAP的面积恰好等于正方形ABCD的面积,求P点的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,一次函数y=﹣x+b与反比例函数y= (x>0)的图象交于A,B两点,与x轴、y轴分别交于C,D两点,连结OA,OB,过A作AE⊥x轴于点E,交OB于点F,设点A的横坐标为m.

(1)b=(用含m的代数式表示);
(2)若SOAF+S四边形EFBC=4,则m的值是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,直线y= x+2与双曲线相交于点A(m,3),与x轴交于点C.

(1)求双曲线解析式;
(2)点P在x轴上,如果△ACP的面积为3,求点P的坐标.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(2017江苏省无锡市,第25题,10分)操作:如图1,P是平面直角坐标系中一点(x轴上的点除外),过点PPCx轴于点C,点C绕点P逆时针旋转60°得到点Q.”我们将此由点P得到点Q的操作称为点的T变换.

(1)点Pab)经过T变换后得到的点Q的坐标为 ;若点M经过T变换后得到点N(6,),则点M的坐标为

(2)A是函数图象上异于原点O的任意一点,经过T变换后得到点B

①求经过点O,点B的直线的函数表达式;

②如图2,直线ABy轴于点D,求OAB的面积与OAD的面积之比.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四张编号为A,B,C,D的卡片(除编号外,其余完全相同)的正面分别写上如图所示正整数后,背面朝上,洗匀放好,现从中随机抽取一张(不放回),再从剩下的卡片中随机抽取一张.

(1)请用树状图或列表的方法表示两次抽取卡片的所有可能出现的结果(卡片用A,B,C,D表示);
(2)我们知道,满足a2+b2=c2的三个正整数a,b,c成为勾股数,求抽到的两张卡片上的数都是勾股数的概率.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】计算:2sin45°﹣32+(﹣ 0+| ﹣2|+

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正△ABC的边长为4,点P为BC边上的任意一点(不与点B、C重合),且∠APD=60°,PD交AB于点D.设BP=x,BD=y,则y关于x的函数图象大致是(  )

A.
B.
C.
D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某自行车公司调查阳光中学学生对其产品的了解情况,随机抽取部分学生进行问卷,结果分“非常了解”、“比较了解”、“一般了解”、“不了解”四种类型,分别记为A、B、C、D.根据调查结果绘制了如下尚不完整的统计图.

(1)本次问卷共随机调查了名学生,扇形统计图中m=
(2)请根据数据信息补全条形统计图.
(3)若该校有1000名学生,估计选择“非常了解”、“比较了解”共约有多少人?

查看答案和解析>>

同步练习册答案