【题目】如图,OA⊥OB,AB⊥x轴于C,点A(,1)在反比例函数y=
的图象上.
(1)求反比例函数y=的表达式;
(2)在x轴上存在一点P,使S△AOP= S△AOB, 求点P的坐标.
【答案】(1);(2)(﹣2
,0),或(2
,0)
【解析】试题分析:(1)把A的坐标代入反比例函数的解析式,即可求出答案;
(2)求出∠A=60°,∠B=30°,求出线段OA和OB,求出△AOB的面积,根据已知S△AOP=S△AOB,求出OP长,即可求出答案.
试题解析:
(1)解:把A( ,1)代入反比例函数y=
得:k=1×
=
,
所以反比例函数的表达式为y= ;
(2)解:∵A( ,1),OA⊥AB,AB⊥x轴于C,
∴OC= ,AC=1,
OA= =
=2,
∵tanA= =
,
∴∠A=60°,
∵OA⊥OB,
∴∠AOB=90°,
∴∠B=30°,
∴OB=2OC﹣2 ,
∴S△AOB= =
=2
,
∵S△AOP= S△AOB ,
∴ ,
∵AC=1,∴OP=2 ,
∴点P的坐标为(﹣2 ,0),或(2
,0).
科目:初中数学 来源: 题型:
【题目】我们规定在网格内的某点进行一定条件操作到达目标点:H代表所有的水平移动,H1代表向右水平移动1个单位长度,H-1代表向左平移1个单位长度;S代表上下移动,S1代表向上移动1个单位长度,S-1代表向下移动1个单位长度,表示点P在网格内先一次性水平移动,在此基础上再一次性上下移动;
表示点P在网格内先一次性上下移动,在此基础上再一次性水平移动.
(1)如图,在网格中标出移动后所到达的目标点
;
(2)如图,在网格中的点B到达目标点A,写出点B的移动方法________________;
(3)如图,在网格内有格点线段AC,现需要由点A出发,到达目标点D,使得A、C、D三点构成的格点三角形是等腰直角三角形,在图中标出所有符合条件的点D的位置并写出点A的移动方法.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0)、B(3,0),与y轴交于点C,顶点为D,对称轴为直线x=1,有下列四个判断:
①关于x的一元二次方程ax2+bx+c=0的两个根分别是x1=﹣1,x2=3;
②a﹣b+c=0;
③若抛物线上有三个点分别为(﹣2,y1)、(1,y2)、(2,y3),则y1<y2<y3;
④当OC=3时,点P为抛物线对称轴上的一个动点,则△PCA的周长的最小值是,
上述四个判断中正确的 有( )
A. 1个 B. 2个 C. 3个 D. 4个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】企业的污水处理有两种方式:一种是输送到污水厂进行集中处理,另一种是通过企业的自身设备进行处理.某企业去年每月的污水量均为12000吨,由于污水厂处于调试阶段,污水处理能力有限,该企业投资自建设备处理污水,两种处理方式同时进行.1至6月,该企业向污水厂输送的污水量y1(吨)与月份x(1≤x≤6,且x取整数)之间满足的函数关系如下表:
月份x(月) | 1 | 2 | 3 | 4 | 5 | 6 |
输送的污水量y1(吨) | 12000 | 6000 | 4000 | 3000 | 2400 | 2000 |
7至12月,该企业自身处理的污水量y2(吨)与月份x(7≤x≤12,且x取整数)之间满足二次函数关系式为y2=ax2+c(a≠0).其图象如图所示.1至6月,污水厂处理每吨污水的费用:z1(元)与月份x之间满足函数关系式:z1=x,该企业自身处理每吨污水的费用:z2(元)与月份x之间满足函数关系式:z2=
x﹣
x2;7至12月,污水厂处理每吨污水的费用均为2元,该企业自身处理每吨污水的费用均为1.5元.
(1)请观察题中的表格和图象,用所学过的一次函数、反比例函数或二次函数的有关知识,分别直接写出y1,y2与x之间的函数关系式;
(2)请你求出该企业去年哪个月用于污水处理的费用W(元)最多,并求出这个最多费用.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知边长为2的正六边形ABCDEF在平面直角坐标系中的位置如图所示,点B在原点,把正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60°,经过2018次翻转之后,点B的坐标是______.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.
(1)求抛物线的解析式;
(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;
(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】平行四边形ABCD的对角线交于点O,已知△OBC的周长为59厘米,且AD的长是28厘米,两对角线的差为14厘米,那么较长的一条对角线长是______厘米.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:直线y=与x轴、y轴分别相交于点A和点B,点C在线段AO上.将△CBO沿BC折叠后,点O恰好落在AB边上点D处.
(1)直接写出点A、点B的坐标:
(2)求AC的长;
(3)点P为平面内一动点,且满足以A、B、C、P为顶点的四边形为平行四边形,请直接回答:
①符合要求的P点有几个?
②写出一个符合要求的P点坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com