分析 延长CD交AB于H,由AD=BD,AC=BC,于是得到CD垂直平分AB,根据线段垂直平分线的性质得到AH=BH=2$\sqrt{3}$,解直角三角形得到DH=$\frac{1}{2}$AB=2$\sqrt{3}$,根据勾股定理得到CH=$\sqrt{A{C}^{2}-A{H}^{2}}$=6,即可得到结论.
解答
解:延长CD交AB于H,
∵AD=BD,AC=BC,
∴CD垂直平分AB,
∴AH=BH=2$\sqrt{3}$,
∵∠ADB=90°,
∴DH=$\frac{1}{2}$AB=2$\sqrt{3}$,
∵AC=AB=4$\sqrt{3}$,
∴CH=$\sqrt{A{C}^{2}-A{H}^{2}}$=6,
∴CD=CH-DH=6-2$\sqrt{3}$,
故答案为:6-2$\sqrt{3}$.
点评 本题考查了等腰直角三角形的性质,等边三角形的性质,线段垂直平分线的判定,勾股定理,正确的作出辅助线是解题的关键.
科目:初中数学 来源: 题型:选择题
| A. | $\frac{1440}{x}=\frac{1440}{x+100}+10$ | B. | $\frac{1440}{x-100}-\frac{1440}{x}=10$ | ||
| C. | $\frac{1440}{x}=\frac{1440}{x-100}+10$ | D. | $\frac{1440}{x+100}-\frac{1440}{x}=10$ |
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
科目:初中数学 来源: 题型:填空题
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com