精英家教网 > 初中数学 > 题目详情

【题目】如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点CAB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).

(1)当x=   秒时,点P到达点A

(2)运动过程中点P表示的数是   (用含x的代数式表示);

(3)当PC之间的距离为2个单位长度时,求x的值.

【答案】(1)5;(2)2x﹣4;(3)x=1.5或3.5.

【解析】

(1)直接得出AB的长,进而利用P点运动速度得出答案;

(2)根据题意得出P点运动的距离减去4即可得出答案;

(3)利用当点C运动到点P左侧2个单位长度时,当点C运动到点P右侧2个单位长度时,分别得出答案.

(1)∵数轴上的点A表示的数为6,点B表示的数为﹣4,

AB=10,

∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,

∴运动时间为10÷2=5(秒),

故答案为:5;

(2)∵动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,

∴运动过程中点P表示的数是:2x﹣4;

故答案为:2x﹣4;

(3)点C表示的数为:[6+(﹣4)]÷2=1,

当点C运动到点P左侧2个单位长度时,

2x﹣4=1﹣2

解得:x=1.5,

当点C运动到点P右侧2个单位长度时,

2x﹣4=1+2

解得:x=3.5

综上所述,x=1.5或3.5.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图1,已知抛物线y=ax2+bx(a≠0)经过A(3,0)、B(4,4)两点.

(1)求抛物线的解析式;
(2)将直线OB向下平移m个单位长度后,得到的直线与抛物线只有一个公共点D,求m的值及点D的坐标;
(3)如图2,若点N在抛物线上,且∠NBO=∠ABO,则在(2)的条件下,求出所有满足△POD∽△NOB的点P坐标(点P、O、D分别与点N、O、B对应).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知一次函数的图像与x轴、轴分别交于点A、B,且BC∥AO,梯形AOBC的面积为10

(1)求点A、B、C的坐标;

(2)求直线AC的表达式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,AB是⊙O的直径,点E为BC的中点,AB=4,∠BED=120°,则图中阴影部分的面积之和是

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,AB⊥BC,AD∥BC,∠BCD=120°,BC=2,AD=DC.P为四边形ABCD边上的任意一点,当∠BPC=30°时,CP的长为

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,射线OA∥射线CB∠C=∠OAB=100°.点DE在线段CB上,且∠DOB=∠BOAOE平分∠DOC

1)试说明AB∥OC的理由;

2)试求∠BOE的度数;

3)平移线段AB

试问∠OBC∠ODC的值是否会发生变化?若不会,请求出这个比值;若会,请找出相应变化规律.

若在平移过程中存在某种情况使得∠OEC=∠OBA,试求此时∠OEC的度数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,PA、PB分别与⊙O相切于点A、B,点M在PB上,且OM∥AP,MN⊥AP,垂足为N.
(1)求证:OM=AN;
(2)若⊙O的半径R=3,PA=9,求OM的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小明设计了一个问题,分两步完成:

(1)已知关于x的一元一次方程,请画出数轴,并在数轴上标注a对应的点,分别记作A,B;

(2)在第1问的条件下,在数轴上另有一点C对应的数为y,CA的距离是CB的距离的5,C在表示5的点的左侧,y的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在矩形ABCD中,MN分别是边ADBC的中点,EF分别是线段BMCM的中点.

(1)求证:ABM≌△DCM

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当ADAB=__________时,四边形MENF是正方形(只写结论,不需证明).

查看答案和解析>>

同步练习册答案