精英家教网 > 初中数学 > 题目详情

【题目】已知:如图,在矩形ABCD中,MN分别是边ADBC的中点,EF分别是线段BMCM的中点.

(1)求证:ABM≌△DCM

(2)判断四边形MENF是什么特殊四边形,并证明你的结论;

(3)当ADAB=__________时,四边形MENF是正方形(只写结论,不需证明).

【答案】(1)见解析;(2)四边形MENF是菱形.(321

【解析】试题分析:(1)根据SAS即可证明△ABM≌△DCM;(2)由(1)得出BM=CM,再根据三角形的中位线定理得出EN=MFEM=FN,先证四边形MENF是平行四边形,再证MEMF,从而可得平行四边形MENF是菱形;(3)当AD∶AB2∶1时,四边形MENF是正方形.可以利用正方形的性质得到MA=AB=MD,从而确定ADAB的值.

试题解析:(1)证明:四边形ABCD是矩形,

∴ABDC∠A∠D90°

∵MAD中点,∴AMDM

△ABM△DCM

∴△ABM≌△DCMSAS);

答:四边形MENF是菱形.

证明:∵NEF分别是BCBMCM的中点,

∴NE∥CM

∴NEFMNE∥FM四边形MENF是平行四边形,

∵△ABM≌△DCM

∴BMCM

∵EF分别是BMCM的中点,

∴MEMF

平行四边形MENF是菱形;

解:当AD∶AB2∶1时,四边形MENF是正方形.理由是:

四边形MENF是正方形,

∴∠EMF=90°

由(1)知:Rt△ABM≌Rt△DCMSAS),

∴∠AMB=∠DMC=45°

此时MA=MD=DC

∴AD=2DC,即AD∶AB2∶1

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,已知数轴上的点A表示的数为6,点B表示的数为﹣4,点CAB的中点,动点P从点B出发,以每秒2个单位长度的速度沿数轴向右匀速运动,设运动时间为x秒(x>0).

(1)当x=   秒时,点P到达点A

(2)运动过程中点P表示的数是   (用含x的代数式表示);

(3)当PC之间的距离为2个单位长度时,求x的值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】为了创建全国卫生城市,某社区要清理一个卫生死角内的垃圾,租用甲、乙两车运送,两车各运12趟可完成,需支付运费4800元.已知甲、乙两车单独运完此堆垃圾,乙车所运趟数是甲车的2倍,且乙车每趟运费比甲车少200元.
(1)求甲、乙两车单独运完此堆垃圾各需运多少趟?
(2)若单独租用一台车,租用哪台车合算?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在如图所示的方格纸中,按下列要求画图:

(1)过点A作线段BC的平行线;

(2)将线段BCC点按逆时针方向旋转90°得线段EC

(3)画以BC为一边的正方形.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知抛物线l:y=ax2+bx+c(a,b,c均不为0)的顶点为M,与y轴的交点为N,我们称以N为顶点,对称轴是y轴且过点M的抛物线为抛物线l的衍生抛物线,直线MN为抛物线l的衍生直线.

(1)如图,抛物线y=x2﹣2x﹣3的衍生抛物线的解析式是 , 衍生直线的解析式是
(2)若一条抛物线的衍生抛物线和衍生直线分别是y=﹣2x2+1和y=﹣2x+1,求这条抛物线的解析式;
(3)如图,设(1)中的抛物线y=x2﹣2x﹣3的顶点为M,与y轴交点为N,将它的衍生直线MN先绕点N旋转到与x轴平行,再沿y轴向上平移1个单位得直线n,P是直线n上的动点,是否存在点P,使△POM为直角三角形?若存在,求出所有点P的坐标;若不存在,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,相距5kmA、B两地间有一条笔直的马路,C地位于AB两地之间且距A2km,小明同学骑自行车从A地出发沿马路以每小时5km的速度向B地匀速运动,当到达B地后立即以原来的速度返回。到达A地停止运动,设运动时间为t(小时).小明的位置为点P、若以点C为坐标原点,以从AB为正方向,用1个单位长度表示1km,解答下列各问:

(1)指出点A所表示的有理数;

(2)t =0.5时,点P表示的有理数;

(3)当小明距离C1km时,直接写出所有满足条件的t值;

(4)在整个运动过程中,求点P与点A的距离(用含t的代数式表示);

(5)用含t的代数式表示点P表示的有理数.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某校九年级(1)班准备购买大课间活动器材呼啦圈和跳绳,已知购买1根跳绳和2个呼啦圈要35元,购买2根跳绳和1个呼啦圈要25元.
(1)求每根跳绳、每个呼啦圈各多少元?
(2)根据班级实际情况,需购买跳绳和呼啦圈的总数量为30,总费用不超过300元,但不低于280元,请你通过计算求出有几种购买方案,哪种方案费用最低.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,正方形ABCD的对角线相交于点OCAB的平分线分别交BDBCEF,作BHAF于点H分别交ACCD于点GP,连结GEGF

1)求证:OAE≌△OBG

2)试问:四边形BFGE是否为菱形?若是,请证明;若不是,请说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】两枚正四面体骰子的各面上分别标有数字1,2,3,4,现在同时投掷这两枚骰子,并分别记录着地的面所得的点数为a、b.
(1)假设两枚正四面体都是质地均匀,各面着地的可能性相同,请你在下面表格内列举出所有情形(例如(1,2),表示a=1,b=2),并求出两次着地的面点数相同的概率.

b
a

1

2

3

4

1

(1,2)

2

3

4


(2)为了验证试验用的正四面体质地是否均匀,小明和他的同学取一枚正四面体进行投掷试验.试验中标号为1的面着地的数据如下:

试验总次数

50

100

150

200

250

500

“标号1”的面着地的次数

15

26

34

48

63

125

“标号1”的面着地的频率

0.3

0.26

0.23

0.24

请完成表格(数字精确到0.01),并根据表格中的数据估计“标号1的面着地”的概率是

查看答案和解析>>

同步练习册答案