精英家教网 > 初中数学 > 题目详情

【题目】过线段的两端作,连交于,那么点到线段的距离为________

【答案】

【解析】

分①AC,BDAB的两侧;②AC、BDAB的同侧两种情况,根据平行线分线段成比例定理以及比例的性质进行变形即可得到答案.

①如图,若AC,BDAB的两侧,作OPABBA延长线于P,则OPCABD,

所以OP:DB=AO:AD

AO:DO=CA:DB=a:b

所以AO:AD=a:(b-a)

所以OP:b=a:(b-a)

所以OP=

②如图,若AC、BDAB的同侧

OPABP,则CAOPBD

因为OP:DB=AO:AD

AO:DO=CA:DB=a:b

所以AO:AD=a:(a+b)

所以OP:b=a:(a+b)

所以OP=

故答案为:

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=x2-3与直线y=kx(k≠0)相交于点A和点B,则一元二次方程x2-kx-3=0的解的情况是( )

A. 有两个不相等的正实根 B. 有两个不相等的负实根

C. 一个正实根、一个负实根 D. 有两个相等的实数根

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】中,,将绕点按顺时针旋转得到,连接,它们交于点,

求证:

,求的度数.

当四边形是菱形时,求的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】用两个全等的等边拼成如图的菱形.现把一个含角的三角板与这个菱形叠合,使三角板的角的顶点与点重合,两边分别与重合.将三角板绕点逆时针方向旋转.

如图,当三角板的两边分别与菱形的两边相交于点时,探求的数量关系,并说明理由;

继续旋转三角板,当两边分别交的延长线于点时,画出旋转后相应的图形,并直接写出满足的数量关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知:如图,在平行四边形ABCD中,EF分别为边ABCD的中点,BD是对角线,AG∥DBCB的延长线于G

1)求证:△ADE≌△CBF

2)若四边形 BEDF是菱形,则四边形AGBD是什么特殊四边形?并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在四边形ABCD中,

为边BC上一点,将沿直线AP翻折至的位置B落在点E

如图1,当点E落在CD边上时,利用尺规作图,在图1中作出满足条件的图形不写作法,保留作图痕迹,用2B铅笔加粗加黑并直接写出此时______

如图2,若点PBC边的中点,连接CE,则CEAP有何位置关系?请说明理由;

Q为射线DC上的一个动点,将沿AQ翻折,点D恰好落在直线BQ上的点处,则______

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,点P是等边三角形ABC内一点,且PA=3PB=4PC=5,若将△APB绕着点B逆时针旋转后得到△CQB

(1)△BPQ 三角形;

(2)求PQ的长度;

(3)求∠APB的度数。

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,小明欲测量一座古塔的高度,他拿出一根竹杆竖直插在地面上,然后自己退后,使眼睛通过竹杆的顶端刚好看到塔顶,若小明眼睛离地面竹杆顶端离地面,小明到竹杆的距离竹杆到塔底的距离,求这座古塔的高度.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】(1)操作与探究:如图,矩形纸片ABCD中,AB=8,将纸片折叠,使顶点B落在边ADE点上,折痕的一端G点在边BC上,BG=10.

①第一次折叠:当折痕的另一端点FAB边上时,如图1,求折痕GF的长;

②第二次折叠:当折痕的另一端点FAD边上时,如图2,证明四边形BGEF为菱形,并求出折痕GF的长.

(2)拓展延伸:通过操作探究发现在矩形纸片ABCD中,AB=5,AD=13.如图3所示,折叠纸片,使点A落在BC边上的A′处,折痕为PQ.当点A′BC边上移动时,折痕的端点P,Q也随之移动.若限定点P,Q分别在AB,AD边上移动,则点A′BC边上可移动的最大距离是   

查看答案和解析>>

同步练习册答案