精英家教网 > 初中数学 > 题目详情

【题目】如图,抛物线y=x2-3与直线y=kx(k≠0)相交于点A和点B,则一元二次方程x2-kx-3=0的解的情况是( )

A. 有两个不相等的正实根 B. 有两个不相等的负实根

C. 一个正实根、一个负实根 D. 有两个相等的实数根

【答案】C

【解析】

一元二次方程x2-kx-3=0可化为x2-3= kx ,由此可得一元二次方程x2-kx-3=0的解是抛物线y=x2-3与直线y=kx(k≠0)交点的横坐标,观察图象即可解答.

一元二次方程x2-kx-3=0可化为x2-3= kx ,由此可得一元二次方程x2-kx-3=0的解是抛物线y=x2-3与直线y=kx(k≠0)交点的横坐标,由图象可知,抛物线y=x2-3与直线y=kx(k≠0)交点的横坐标为一正一负,所以元二次方程x2-kx-3=0有一个正实根、一个负实根,故选C.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】某中学为了解学生到校交通方式情况,随机抽取各年级部分学生就“上下学交通方式”进行问卷调查,调查分为“A:骑自行车;B:步行;C:坐公交车;D:其他”四种情况,并根据调查结果绘制出部分条形统计图(如图①)和部分扇形统计图(如图②),请根据图中的信息,解答下列问题.

(1)本次调查共抽取 名学生;

(2)求出扇形统计图中“C”所对扇形的圆心角的度数,并将条形统计图补充完整;

(3)若该中学共有学生3000人,估计有多少学生在上下学交通方式中选择坐公交车?

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在四边形ABCD中,MN分别是CDBC的中点,且AMCDANBC

(1)求证:∠BAD=2MAN

(2)连接BD,若∠MAN=70°,DBC=40°,求∠ADC

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】甲、乙两人在笔直的湖边公路上同起点、同终点、同方向匀速步行2400米,先到终点的人原地休息.已知甲先出发4分钟.在整个步行过程中,甲、乙两人的距离y(米)与甲出发的时间t

(分)之间的关系如图所示,下列结论:

甲步行的速度为60/分;

乙走完全程用了30分钟;

乙用16分钟追上甲;

乙到达终点时,甲离终点还有320

其中正确的结论有(  )

A. 1 B. 2 C. 3 D. 4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】在平面直角坐标系xOy中,对于点P (xy),若点Q的坐标为(ax+yx+ay) 其中a为常数,则称点Q是点P“a级关联点",例如,点P(14)“3级关联点"Q (3×1+41+3×4) Q (713)

(1)已知点A (-26)级关联点是点A1,点B“2级关联点B1 (3 3) 求点A1和点B的坐标:

(2)已知点M (m-1 2m)“-3级关联点"M位于坐标轴上,求M的坐标

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】ABC中,DAB的中点,FBC上一点,DFAC,延长FDE,且DE=DF,联结AEAF

1)求证:∠E=C;

2)如果DF平分∠AFB,求证:ACAB

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,抛物线y=-x2+x+x轴交于点A,B(A在点B的左侧),y轴交于点C.

(1)求点A,B,C的坐标;

(2)若该抛物线的顶点是点D,求四边形OCDB的面积;

(3)已知点P是该抛物线对称轴的一点,若以点P,O,D为顶点的三角形是等腰三角形,请直接写出点P的坐标.(不用说理)

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,为了测量出楼房AC的高度,从距离楼底C处米的点D(点D与楼底C在同一水平面上)出发,沿斜面坡度为i=1:的斜坡DB前进30米到达点B,在点B处测得楼顶A的仰角为53°,求楼房AC的高度(参考数据:sin53°≈0.8,cos53°≈0.6,tan53°≈,计算结果用根号表示,不取近似值).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】过线段的两端作,连交于,那么点到线段的距离为________

查看答案和解析>>

同步练习册答案