【题目】如图,在四边形ABCD中,M,N分别是CD,BC的中点,且AM⊥CD,AN⊥BC。
(1)求证:∠BAD=2∠MAN;
(2)连接BD,若∠MAN=70°,∠DBC=40°,求∠ADC。
【答案】(1)证明见解析;(2)50°
【解析】
(1)首先连接AC,根据AM⊥CD,AN⊥BC,判断出AM、AN分别是CD、BC的垂直平分线,得到AC=AD,AB=AC,再根据等腰三角形三线合一的性质得到∠DAM=∠CAM,∠BAN=∠CAN,然后根据角的和差即可得出结论;
(2)由∠MAN=70°,得出∠BAD的度数.由四边形ANCM内角和等于360°,得到∠BCD的度数.在△BCD中,由三角形内角和定理得到∠BDC的度数.在△ABD中,根据等腰三角形的性质和三角形内角和定理可得出∠ADB的度数,根据角的和差即可得出结论.
(1)如图,连接AC.
∵M、N分别是CD、BC的中点,且AM⊥CD,AN⊥BC,∴AM、AN分别是CD、BC的垂直平分线,∴AC=AD,AB=AC.
∵AM⊥CD,AN⊥BC,∴∠DAM=∠CAM,∠BAN=∠CAN,∴∠DAC+∠BAC=2∠CAM+2∠CAN,∴∠BAD=2∠MAN;
(2)∵∠MAN=70°,∴∠BAD=2∠MAN=140°.
∵AM⊥CD,AN⊥BC,∴∠BCD=180°-∠MAN=180°-70°=110°.
∵∠DBC=40°,∴∠BDC=180°-∠DBC-∠BCD=180°-40°-110°=30°.
∵AB=AC=AD,∴∠ABD=∠ADB.
∵∠BAD=140°,∴∠ABD=∠ADB=20°,∴∠ADC=∠ADB+∠BDC=20°+30°=50°.
科目:初中数学 来源: 题型:
【题目】某校组织一项公益知识竞赛,比赛规定:每个班级由2名男生、2名女生及1名班主任老师组成代表队.但参赛时,每班只能有3名队员上场参赛,班主任老师必须参加,另外2名队员分别在2名男生和2名女生中各随机抽出1名.初三(1)班由甲、乙2名男生和丙、丁2名女生及1名班主任组成了代表队,求恰好抽到由男生甲、女生丙和这位班主任一起上场参赛的概率.(请用“画树状图”或“列表”或“列举”等方法给出分析过程)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在一次数学活动课中,某数学小组探究求环形花坛(如图所示)面积的方法,现有以下工具;①卷尺;②直棒EF;③T型尺(CD所在的直线垂直平分线段AB).
(1)在图1中,请你画出用T形尺找大圆圆心的示意图(保留画图痕迹,不写画法);
(2)如图2,小华说:“我只用一根直棒和一个卷尺就可以求出环形花坛的面积,具体做法如下:
将直棒放置到与小圆相切,用卷尺量出此时直棒与大圆两交点M,N之间的距离,就可求出环形花坛的面积”如果测得MN=10m,请你求出这个环形花坛的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠ACB=90°,AC=4,BC=3,D是边AC的中点,CE⊥BD交AB于点E.
(1)求tan∠ACE的值;
(2)求AE:EB.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,长为 ,宽为 的大长方形被分割为 小块,除阴影 , 外,其余 块是形状、大小完全相同的小长方形,其较短一边长为 .
(1)每个小长方形较长的一边长是 (用含 的代数式表示).
(2)分别用含 , 的代数式表示阴影 , 的面积,并计算阴影 A 的面积与阴影B的面积的差.
(3)当 时,阴影 与阴影 的面积差会随着 的变化而变化吗?请你作出判断,并说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=x2-3与直线y=kx(k≠0)相交于点A和点B,则一元二次方程x2-kx-3=0的解的情况是( )
A. 有两个不相等的正实根 B. 有两个不相等的负实根
C. 一个正实根、一个负实根 D. 有两个相等的实数根
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com