【题目】如图,一艘船以每小时30海里的速度向北偏东75°方向航行,在点 处测得码头 的船的东北方向,航行40分钟后到达处,这时码头恰好在船的正北方向,在船不改变航向的情况下,求出船在航行过程中与码头的最近距离.(结果精确的0.1海里,参考数据 )
【答案】船在航行过程中与码头C的最近距离是13.7海里.
【解析】
试题分析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,由题意可知:船在航行过程中与码头C的最近距离是CE,根据∠DAB=30°,AB=20,从而可求出BD、AD的长度,进而可求出CE的长度.
试题解析:过点C作CE⊥AB于点E,过点B作BD⊥AC于点D,
由题意可知:船在航行过程中与码头C的最近距离是CE,AB=30×=20,
∵∠NAC=45°,∠NAB=75°,∴∠DAB=30°,∴BD=AB=10,
由勾股定理可知:AD=10
∵BC∥AN,∴∠BCD=45°,∴CD=BD=10,∴AC=10+10
∵∠DAB=30°,∴CE=AC=5+5≈13.7
答:船在航行过程中与码头C的最近距离是13.7海里
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与x轴交于点A,与y轴交于点C,抛物线经过A、C两点,与x轴的另一交点为点B.
(1)求抛物线的函数表达式;
(2)点D为直线AC上方抛物线上一动点;
①连接BC、CD,设直线BD交线段AC于点E,△CDE的面积为,△BCE的面积为,求的最大值;
②过点D作DF⊥AC,垂足为点F,连接CD,是否存在点D,使得△CDF中的某个角恰好等于∠BAC的2倍?若存在,求点D的横坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,四边形的顶点是坐标原点,点的坐标为,点的坐标为,点的坐标为,点分别为四边形边上的动点,动点从点开始,以每秒1个单位长度的速度沿路线向中点匀速运动,动点从点开始,以每秒两个单位长度的速度沿路线向终点匀速运动,点同时从点出发,当其中一点到达终点后,另一点也随之停止运动。设动点运动的时间秒(),的面积为.
(1)填空:的长是 ,的长是 ;
(2)当时,求的值;
(3)当时,设点的纵坐标为,求与的函数关系式;
(4)若,请直接写出此时的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,∠BAC的平分线与BC的垂直平分线相交于点D , DE⊥AB , DF⊥AC , 垂足分别为E , F , AB=11,AC=5,则BE= .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,等腰直角三角形ABC,AB=BC,直角顶点B在直线PQ上,且AD⊥PQ于D,CE⊥PQ于E.
(1)△ADB与△BEC全等吗?为什么?
(2)图1中,AD、DE、CE有怎样的等量关系?说明理由.
(3)将直线PQ绕点B旋转到如图2所示的位置,其他条件不变,那么AD,DE,CE有怎样的等量关系?说明理由.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com