【题目】某健身房的普通卡票价为20元/张,为了促销,新推出两种优惠卡仅限11月12月使用;①金卡售价为600元/张,每次凭卡不再收费;②银卡售价为150元/张,每次凭卡另收10元;设顾客去健身房的次数为x次,用普通票消费是y1元,用金卡消费是y2元,用银卡消费是y3元;
(1) 分别写出y1、y2、y3与x的关系式;(不写x的取值范围)
(2)根据所给图形,分别说出当x为多少次时,普通票更优惠?多少次时,银卡更优惠?多少次时,金卡更优惠?
【答案】(1);(2)少于15次,普通卡优惠,x=15时,银卡、普通票的总费用相同,均比金卡合算;大15次小于45次银卡优惠,x=45时,金卡、银卡的总费用相同,均比普通票合算;大于45次金卡优惠.
【解析】
(1)根据银卡售价150元/张,每次凭卡另收10元,以及旅游馆普通票价20元/张,设游泳x次时,分别得出所需总费用为y元与x的关系式即可;
(2)利用函数交点坐标求法求出点A、B、C的坐标,再结合函数图象分别得出即可.
(1)由题意可得:银卡消费:y=10x+150,普通消费:y=20x;
(2)由题意可得:当10x+150=20x,
解得:x=15,则y=300,
故B(15,300),
当y=10x+150,x=0时,y=150,故A(0,150),
当y=10x+150=600,
解得:x=45,则y=600,
故C(45,600);
故,当0<x<15时,普通消费更划算;
当x=15时,银卡、普通票的总费用相同,均比金卡合算;
当15<x<45时,银卡消费更划算;
当x=45时,金卡、银卡的总费用相同,均比普通票合算;
当x>45时,金卡消费更划算.
科目:初中数学 来源: 题型:
【题目】某中学计划召开“诚信在我心中”主题教育活动,需要选拔活动主持人,经过全校学生投票推荐,有2名男生和1名女生被推荐为候选主持人.
(1)小明认为,如果从3名候选主持人中随机选拔1名,不是男生就是女生,因此选出的主持人是男生和女生的可能性相同,你同意他的说法吗?为什么?
(2)如果从3名候选主持人中随机选拔2名,请通过列表或画树状图求选拔的2名主持人恰好是1名男生和1名女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,矩形ABCD中,AB=4,AD=5,E为BC上一点,BE:CE=3:2,连接AE,点P从点A出发,沿射线AB的方向以每秒1个单位长度的速度匀速运动,过点P作PF∥BC交直线AE于点F.
(1)线段AE= ;
(2)设点P的运动时间为t(s),EF的长度为y,求y关于t的函数关系式,并写出t的取值范围;
(3)当t为何值时,以F为圆心的⊙F恰好与直线AB、BC都相切?并求此时⊙F的半径;
(4)如图2,将△AEC沿直线AE翻折,得到△AEC',连结AC',如果∠ABF=∠CBC′,求t值.(直接写出答案,不要求解答过程).
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC与△DCE有公共顶点C,AB=CD,BC=CE,∠ABC=∠DCE=90°.
(1)如图1,当点D在BC延长线上时.
①求证:△ABC≌△DCE.
②判断AC与DE的位置关系,并说明理由.
(2)如图2,△CDE从(1)中位置开始绕点C顺时针旋转,当点D落在BC边上时停止.
①若∠A=60°,记旋转的度数为,当为何值时,DE与△ABC一边平行.
②如图3,若AB=c, BC=a, AC=b, a>c,边BC,DE交于点F,求整个运动过程中,F在BC上的运动路程(用含a, b, c的代数式表示)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,点D、E、F分别在边AB、BC、CA上,且DE∥CA,DF∥BA.
下列四种说法:①四边形AEDF是平行四边形;②如果∠BAC=90°,那么四边形AEDF是矩形;③如果AD平分∠BAC,那么四边形AEDF是菱形;④如果AD⊥BC且AB=AC,那么四边形AEDF是菱形.
其中,正确的有( ) 个.
A.1 B.2 C.3 D.4
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“中华人民共和国道路交通管理条例”规定:小汽车在城街路上行驶速度不得超过km/h.如图,一辆小汽车在一条城市街路上直道行驶,某一时刻刚好行驶到路对面车速检测仪正前方m处,过了2s后,测得小汽车与车速检测仪间距离为m,这辆小汽车超速了吗?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在等边三角形ABC中,点D是BC的中点,点E、F分别是边AB、AC(含线段AB、AC的端点)上的动点,且∠EDF=120°,小明和小慧对这个图形展开如下研究:
问题初探:(1)如图1,小明发现:当∠DEB=90°时,BE+CF=nAB,则n的值为 ;
问题再探:(2)如图2,在点E、F的运动过程中,小慧发现两个有趣的结论:
①DE始终等于DF;②BE与CF的和始终不变;请你选择其中一个结论加以证明.
成果运用:(3)若边长AB=8,在点E、F的运动过程中,记四边形DEAF的周长为L,L=DE+EA+AF+FD,则周长L 取最大值和最小值时E点的位置?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某研究所将某种材料加热到1000℃时停止加热,并立即将材料分为A、B两组,采用不同工艺做降温对比实验,设降温开始后经过x min时,A、B两组材料的温度分别为yA℃、yB℃,yA、yB与x的函数关系式分别为yA=kx+b,yB=(x﹣60)2+m(部分图象如图所示),当x=40时,两组材料的温度相同.
(1)分别求yA、yB关于x的函数关系式;
(2)当A组材料的温度降至120℃时,B组材料的温度是多少?
(3)在0<x<40的什么时刻,两组材料温差最大?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com