精英家教网 > 初中数学 > 题目详情
5.如图,△ABC中E是BC上的一点,EC=2BE,点D是AC的中点,则EF:AF=$\frac{1}{3}$;若S△ABC=12,则S△ADF-S△BEF=2.

分析 过D作DG∥AE交CE于G,由点D是AC的中点,得到AD=$\frac{1}{2}$AC,CG=EG,求得EF=$\frac{1}{2}$DG,得到AF=$\frac{3}{2}$DG,于是得到EF:AF=$\frac{1}{3}$,然后分别求出S△ABD,S△ABE再根据S△ADF-S△BEF=S△ABD-S△ABE即可求出结果.

解答 解:过D作DG∥AE交CE于G,
∵点D是AC的中点,
∴AD=$\frac{1}{2}$AC,CG=EG,
∴AE=2DG,CE=2CG,
∵EC=2BE,
∴BE=EG,
∴EF=$\frac{1}{2}$DG,
∴AF=$\frac{3}{2}$DG,
∴EF:AF=$\frac{1}{3}$,
∵S△ABC=12,
∴S△ABD=$\frac{1}{2}$S△ABC=$\frac{1}{2}$×12=6.
∵EC=2BE,S△ABC=12,
∴S△ABE=$\frac{1}{3}$S△ABC=$\frac{1}{3}$×12=4,
∵S△ABD-S△ABE=(S△ADF+S△ABF)-(S△ABF+S△BEF)=S△ADF-S△BEF
即S△ADF-S△BEF=S△ABD-S△ABE=6-4=2.
故答案为:$\frac{1}{3}$,2.

点评 本题考查了三角形的中位线的性质,三角形的面积,关键知道当高相等时,面积等于底边的比,根据此可求出三角形的面积,然后求出差.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

5.求下列各式中x的值:
①4x2=25
②27(x-1)3-8=0.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

6.若已知$\left\{\begin{array}{l}{2x+3y-2z=0}\\{2x-3y+z=0}\end{array}\right.$,则x:y:z=1:2:4.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

13.如图,B、F、C、E在一条直线上,AB=DE,BF=CE,AC=DF.
求证:AC∥DF.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

20.在△ABC中,AB=AC,点D是直线BC上的一点(不与点B、C重合),以AD为一边在AD的右侧作△ADE,使AD=AE,∠DAE=∠BAC,连接CE.
(1)如图,点D在线段BC上,若∠BAC=90°,则∠BCE等于90度;
(2)设∠BAC=α,∠BCE=β.
①如图,若点D在线段BC上移动,则α与β之间有怎样的数量关系?请说明理由;
②若点D在直线BC上移动,则α与β之间有怎样的数量关系?请直接写出你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

10.观察下列算式:$\frac{1}{\sqrt{2}+1}$=$\frac{(\sqrt{2}-1)}{(\sqrt{2}+1)(\sqrt{2}-1)}$=$\frac{(\sqrt{2}-1)}{1}$=$\sqrt{2}-1$
$\frac{1}{\sqrt{3}+\sqrt{2}}$=$\frac{(\sqrt{3}-\sqrt{2})}{(\sqrt{3}+\sqrt{2})(\sqrt{3}-\sqrt{2})}$=$\frac{\sqrt{3}-\sqrt{2}}{1}$=$\sqrt{3}-\sqrt{2}$
$\frac{1}{\sqrt{4}+\sqrt{3}}$=$\frac{(\sqrt{4}-\sqrt{3})}{(\sqrt{4}+\sqrt{3})(\sqrt{4}-\sqrt{3})}$=$\frac{\sqrt{4}-\sqrt{3}}{1}$=$\sqrt{4}-\sqrt{3}$
(1)根据你发现的规律填空:$\frac{1}{\sqrt{2015}+\sqrt{2014}}$=$\sqrt{2015}$-$\sqrt{2014}$,$\frac{1}{\sqrt{n}+\sqrt{n-1}}$=$\sqrt{n}$-$\sqrt{n-1}$.
(2)对比下面的算式与上面的有何异同,根据你的观察、猜想与验证,计算:
($\frac{1}{\sqrt{3}+1}+$$\frac{1}{\sqrt{5}+\sqrt{3}}$+$\frac{1}{\sqrt{7}+\sqrt{5}}$…+$\frac{1}{\sqrt{2015}+\sqrt{2013}}$)×($\sqrt{2015}+1$)

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

17.对于任意的实数x,代数式x2-5x+10的值是一个(  )
A.正数B.负数C.非负数D.不能确定

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

14.一个不透明的袋子里装着6个黄球,10个黑球和14个红球,他们除了颜色外完全相同.
(1)小明和小颖玩摸球游戏,规定每人摸球一次再将球放回为依次游戏,若摸到黑球则小明获胜,摸到黄球则小颖获胜,这个游戏公平吗?说说你的理由.
(2)现在裁判向袋子中放入若干个红球,大量重复试验后,发现小明获胜的频率稳定在0.25附近,问裁判放入了多少个红球?

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

15.若关于x的方程$\frac{x}{x-2}$-$\frac{m}{{{x^2}-4}}$=1的解为正数,则m的取值范围是(  )
A.m<4B.m>4C.m<4且m≠0D.m>4且m≠8

查看答案和解析>>

同步练习册答案