精英家教网 > 初中数学 > 题目详情

【题目】如图,在每个小正方形的边长为1的方格纸中,把△ABC向右平移5个方格得△A1B1C1,再绕点B1顺时针方向旋转90°得△A2B1C2.

(1)画出平移和旋转后的图形,并标明对应字母.

(2)求顶点A从开始到结束所经过的路径的长.(结果用含有π的式子表示)

【答案】(1)作图见解析;(2)5+

【解析】

(1)根据网格特点和平移的性质画出点A、B、C的对应点A1、B1、C1,则可得到△A1B1C1;利用网格特点和旋转的性质画出点A、B、C的对应点A2、B1、C2,则可得到△A2B1C2

(2)先求出A到A1的距离,再求出点A1在旋转过程中走过的路径是以B1点为圆心,BA1为半径,圆心角为90度的弧长,于是根据弧长公式可求解.

(1)如图,△A1B1C1和△A2B1C2为所作;

(2)AB=

所以点A1在旋转过程中走过的路径长=

所以点A从开始到结束所经过的路径的长为5+

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】向阳中学数学兴趣小组对关于x的方程(m+1+m2x1=0提出了下列问题:

1)是否存在m的值,使方程为一元二次方程?若存在,求出m的值,并解此方程;

2)是否存在m的值,使方程为一元一次方程?若存在,求出m的值,并解此方程.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】已知,如图,在长方形ABCD中,AB=4AD=6.延长BC到点E,使CE=3,连接DE

1DE的长为   

2)动点P从点B出发,以每秒1个单位的速度沿BCCDDA向终点A运动,设点P运动的时间为t秒,求当t为何值时,△ABP和△DCE全等?

3)若动点P从点B出发,以每秒1个单位的速度仅沿着BE向终点E运动,连接DP.设点P运动的时间为t秒,是否存在t,使△PDE为等腰三角形?若存在,请直接写出t的值;否则,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】有甲、乙两种糖果,原价分别为每千克a元和b元.根据调查,将两种糖果按甲种糖果x千克与乙种糖果y千克的比例混合,取得了较好的销售效果.现在糖果价格有了调整:甲种糖果单价下降15%,乙种糖果单价上涨20%,但按原比例混合的糖果单价恰好不变,则等于(  )

A.B.C.D.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,D为等边ABC中边BC的中点,在边DA的延长线上取一点E,以CE为边、在CE的左下方作等边CEF,连结AF.若AB4AF,则CF的值为_____

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,ABC是直线l上的三个点,∠DAB=∠DBE=∠ECBa,且BDBE

1)求证:ACAD+CE

2)若a120°,点F在直线l的上方,BEF为等边三角形,补全图形,请判断ACF的形状,并说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图中的图象(折线ABCDE)描述了一汽车在某一直道上的行驶过程中,汽车离出发地的距离s(千米)和行驶时间t(小时)之间的函数关系.根据图中提供的信息,给出下列说法:

①汽车共行驶了120千米;

②汽车在行驶途中停留了0.5小时;

③汽车在整个行驶过程中的平均速度为千米/时;

④汽车自出发后3小时至4.5小时之间行驶的速度在逐渐减少.

其中正确的说法有(  )

A.1B.2C.3D.4

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】函数y=x2+bx+c的图像与x 轴交于A、B两点,与y轴交于点C,OB=OC.点D在函数图像上,CD//x轴,且CD=2,直线l 是抛物线的对称轴,E是抛物线的顶点.

(1)求b、c 的值;

(2)如图,连接BE,线段OC 上的点F 关于直线l 的对称点F 恰好在线段BE上,求点F的坐标;

(3)如图,动点P在线段OB上,过点P x 轴的垂线分别与BC交于点M,与抛物线交于点N.试问:抛物线上是否存在点Q,使得△PQN△APM的面积相等,且线段NQ的长度最小?如果存在,求出点Q的坐标;如果不存在,说明理由.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,OA=2,以点A为圆心,1为半径画⊙AOA的延长线交于点C,过点AOA的垂线,垂线与⊙A的一个交点为B,连接BC

1)线段BC的长等于

2)请在图中按下列要求逐一操作,并回答问题:

①以点 为圆心,以线段 的长为半径画弧,与射线BA交于点D,使线段OD的长等于

②连OD,在OD上画出点P,使OP得长等于,请写出画法,并说明理由.

查看答案和解析>>

同步练习册答案