【题目】如图所示,在四边形中,,、分别是、的中点,、的延长线分别与的延长线交于点、,则( )
A.B.
C.D.与的大小关系不确定
【答案】B
【解析】
连接BD,取中点I,连接IE,IF,根据三角形中位线定理得IE=2AD,且平行AD,IF=BC且平行BC,再利用 AD>BC和 IE∥AD,求证∠AHE=∠IEF,同理 可证∠BGE=∠IFE,再利用IE>IF和∠AHE=∠IEF,∠BGE=∠IFE即可得出结论.
连接BD,取中点I,连接IE,IF
∵E,F分别是AB,CD的中点,
∴IE,IF分别是△ABD,△BDC的中位线,
∴IE=2AD,且平行AD,IF=BC且平行BC,
∵AD>BC,
∴IE>IF,
∵IE∥AD,
∴∠AHE=∠IEF,
同理∠BGE=∠IFE,
∵在△IEF中,IE>IF,
∴∠IFE>∠IEF,
∵∠AHE=∠IEF,∠BGE=∠IFE,
∴∠BGE>∠AHE.
故选:C.
科目:初中数学 来源: 题型:
【题目】如图,无人机在空中C处测得地面A、B两点的俯角分别为60°、45°,如果无人机距地面高度CD为米,点A、D、E在同一水平直线上,则A、B两点间的距离是_____米.(结果保留根号)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AOOM,OA=8,点B为射线OM上的一个动点,分别以OB、AB为直角边,B为直角顶点,在OM两侧作等腰Rt△OBF、等腰Rt△ABE,连接EF交OM于P点,当点B在射线OM上移动时,PB的长度是 ( )
A. 3.6 B. 4 C. 4.8 D. PB的长度随B点的运动而变化
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,分别以Rt△ABC的直角边AC及斜边AB向外作等边△ACD,等边△ABE.已知∠BAC=30°,EF⊥AB,垂足为F,连接DF.
(1)试说明AC=EF;
(2)求证:四边形ADFE是平行四边形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知∠AOB的大小为α,P是∠AOB内部的一个定点,且OP=2,点E、F分别是OA、OB上的动点,若△PEF周长的最小值等于2,则α=( )
A. 30°B. 45°C. 60°D. 15°
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】“垃圾不落地,城市更美丽”.某中学为了了解七年级学生对这一倡议的落实情况,学校安排政教处在七年级学生中随机抽取了部分学生,并针对学生“是否随手丢垃圾”这一情况进行了问卷调查,统计结果为:A为从不随手丢垃圾;B为偶尔随手丢垃圾;C为经常随手丢垃圾三项.要求每位被调查的学生必须从以上三项中选一项且只能选一项.现将调查结果绘制成以下来不辜负不完整的统计图.
请你根据以上信息,解答下列问题:
(1)补全上面的条形统计图和扇形统计图;
(2)所抽取学生“是否随手丢垃圾”情况的众数是 ;
(3)若该校七年级共有1500名学生,请你估计该年级学生中“经常随手丢垃圾”的学生约有多少人?谈谈你的看法?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABCD中,AB=4,AD=5,tanA=,点P从点A出发,沿折线AB﹣BC以每秒1个单位长度的速度向中点C运动,过点P作PQ⊥AB,交折线AD﹣DC于点Q,将线段PQ绕点P顺时针旋转90°,得到线段PR,连接QR.设△PQR与ABCD重叠部分图形的面积为S(平方单位),点P运动的时间为t(秒).
(1)当点R与点B重合时,求t的值;
(2)当点P在BC边上运动时,求线段PQ的长(用含有t的代数式表示);
(3)当点R落在ABCD的外部时,求S与t的函数关系式;
(4)直接写出点P运动过程中,△PCD是等腰三角形时所有的t值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com