精英家教网 > 初中数学 > 题目详情

【题目】如图,四边形中,是对角线,以为边向四边形内部作正方形,连接,则的长为________

【答案】3

【解析】

连接CE,由等腰直角三角形的性质得出ACBC3,∠ACB45°,由勾股定理得出AD,由正方形的性质得出DECD3,∠DCF90°,∠ECF45°CECF,求出AEADDE6,证明BCF∽△ACE,得出,即可得出结果.

连接CE,如图所示:

∵∠ABC90°ABBC3

ACBC3ACB45°

∵∠D90°CD3

AD

四边形CDEF是正方形,

DECD3DCF90°ECF45°CECF

AEADDE6

∴∠ACBECF

∴∠BCFACE

∴△BCF∽△ACE

故答案为3

练习册系列答案
相关习题

科目:初中数学 来源: 题型:

【题目】如图,点的直径的延长线上,点上,且AC=CD∠ACD=120°.

1)求证:的切线;

2)若的半径为2,求图中阴影部分的面积.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,已知抛物线轴交于两点,与轴交于点

1)求抛物线的解析式及顶点坐标;

2)在抛物线的对称轴上找到点,使得的周长最小,并求出点的坐标;

3)在(2)的条件下,若点是线段上的一个动点(不与点重合).过点轴于点.设的长为,问当取何值时,

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】感知:如图,在等腰直角三角形ABC中,∠ACB=90°,BCm,将边AB绕点B顺时针旋转90°得到线段BD,过点DDECBCB的延长线于点E,连接CD

(1)求证:△ACB≌△BED

(2)△BCD的面积为   (用含m的式子表示).

拓展:如图,在一般的Rt△ABC,∠ACB=90°,BCm,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,用含m的式子表示△BCD的面积,并说明理由.

应用:如图,在等腰△ABC中,ABACBC=8,将边AB绕点B顺时针旋转90°得到线段BD,连接CD,则△BCD的面积为   ;若BCm,则△BCD的面积为   (用含m的式子表示).

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】小华同学对图形旋转前后的线段之间、角之间的关系进行了拓展探究.

(一)猜测探究

在△ABC中,ABACM是平面内任意一点,将线段AM绕点A按顺时针方向旋转与∠BAC相等的角度,得到线段AN,连接NB

1)如图1,若M是线段BC上的任意一点,请直接写出∠NAB与∠MAC的数量关系是_______,NBMC的数量关系是_______;

2)如图2,点EAB延长线上点,若M是∠CBE内部射线BD上任意一点,连接MC,(1)中结论是否仍然成立?若成立,请给予证明,若不成立,请说明理由。

(二)拓展应用

如图3,在△A1B1C1中,A1B18,∠A1B1C190°,∠C130°,PB1C1上的任意点,连接A1P,将A1P绕点A1按顺时针方向旅转60°,得到线段A1Q,连接B1Q.求线段B1Q长度的最小值.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在△ABC中,ABAC,以AB为直径的O分别交BC于点D,交CA的延长线于点E,过点DDHAC,垂足为点H,连接DE,交AB于点F

1)求证:DHO的切线;

2)若O的半径为4

AEFE时,求 的长(结果保留π);

时,求线段AF的长.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】某批发市场经销龟苓膏粉,其中品牌的批发价是每包20元,品牌的批发价是每包25元,小明计划购买这两种品牌的龟苓膏粉共1000包,解答下列问题:

1)若购买这些龟苓膏粉共花费22000元,求两种品牌的龟苓膏粉各购买了多少包?

2)若凭会员卡在此批发市场购买商品可以获得8折优惠,会员卡费用为500元,

若购买会员卡并用此卡购买这些龟苓膏粉共花费元,设品牌购买了包,请求出之间的函数关系式.

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】如图,在平面直角坐标系中,反比例函数与正比例函数的图像分别交于点AB,若∠AOB45°,则△AOB的面积是________

查看答案和解析>>

科目:初中数学 来源: 题型:

【题目】邻边不相等的平行四边形纸片,剪去一个菱形,余下一个四边形,称为第一次操作;在余下的四边形纸片中再剪去一个菱形,又余下一个四边形,称为第二次操作;……依次类推,若第n次操作余下的四边形是菱形,则称原平行四边形为n阶准菱形,如图1,平行四边形中,若,则平行四边形1阶准菱形.

1)判断与推理:

邻边长分别为23的平行四边形是__________阶准菱形;

小明为了剪去一个菱形,进行如下操作:如图2,把平行四边形沿着折叠(点上)使点落在边上的点,得到四边形,请证明四边形是菱形.

2)操作、探究与计算:

已知平行四边形的邻边分别为1裁剪线的示意图,并在图形下方写出的值;

已知平行四边形的邻边长分别为,满足,请写出平行四边形是几阶准菱形.

查看答案和解析>>

同步练习册答案