【题目】如图,一次函数y=kx+b与反比例函数y= 的图像交于(1,3),B(3,n)两点.
(1)求一次函数和反比例函数的解析式;
(2)连接AO,BO,求△ABO的面积.
【答案】
(1)解:把点(1,3),B(3,n)分别代入y= (x>0)得m=1,n=1,
∴A点坐标为(1,3),B点坐标为(3,1),
把A(1,3),B(3,1)分别代入y=kx+b得 ,解得 ,
∴一次函数解析式为y=﹣x+4,反比例函数的解析式为y=
(2)解:分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.
令﹣x+4=0,得x=4,即D(4,0).
∵A(1,3),B(3,1),
∴AE=3,BC=1,
∴S△AOB=S△AOD﹣S△BOD= ×4×3﹣ ×4×1=4.
【解析】(1)先把点A(1,3),B(3,n)分别代入y= (x>0)可求出m、n的值,确定B点坐标为(3,2),然后利用待定系数法求一次函数的解析式;(2)分别过点A、B作AE⊥x轴,BC⊥x轴,垂足分别是E、C点.直线AB交x轴于D点.S△AOB=S△AOD﹣S△BOD , 由三角形的面积公式可以直接求得结果.
科目:初中数学 来源: 题型:
【题目】用配方法解一元二次方程x2﹣6x﹣8=0,下列变形正确的是( )
A. (x﹣6)2=﹣8+36 B. (x﹣6)2=8+36 C. (x﹣3)2=8+9 D. (x﹣3)2=﹣8+9
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】计算:
(1)简便计算:
(2)计算:2a3b2(﹣3bc2)3÷(﹣ca2)
(3)先化简再求值:[(3x+2y)(3x﹣2y)﹣(x+2y)(5x﹣2y)]÷4x,其中x= ,y=2.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,在△ABO中,∠OAB=90°,∠AOB=30°,OB=8.以OB为一边,在△OAB外作等边三角形OBC,D是OB的中点,连接AD并延长交OC于E.
(1)求点B的坐标;
(2)求证:四边形ABCE是平行四边形;
(3)如图2,将图1中的四边形ABCO折叠,使点C与点A重合,折痕为FG,求OG的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com