精英家教网 > 初中数学 > 题目详情
10.在平面直角坐标系中,将点B(-2,3)绕着点A(-1,0)顺时针旋转90°,求旋转后的点B′的坐标.

分析 作BC⊥x轴于C,利用点A、B的坐标得到BC=2,AC=1,根据旋转的定义,把AB绕着点B顺时针旋转90°得到AB′,如图,利用旋转的性质得AB′=AB,作B′C′⊥x轴于C′,根据三角形全等得AC′=BC=3,B′C′=AC=1,于是可得到点B′的坐标.

解答 解:作BC⊥x轴于C,
∵点A、B的坐标分别为(-1,0)、(-2,3),
∴BC=3,AC=2-1=1,
把AB绕着点B顺时针旋转90°得到AB′,如图,
∴AB′=AB,作B′C′⊥x轴于C′,
∵∠BAB′=90°,
∴∠BAC+∠B′AC′=90°,
∵∠BAC+∠ABC=90°,
∴∠ABC=∠B′AC′,
在△ABC和△B′AC′中
$\left\{\begin{array}{l}{∠ABC=∠B′AC′}\\{∠ACB=∠B′C′A=90°}\\{AB=AB′}\end{array}\right.$
∴△ABC≌△B′AC′(AAS),
∴AC′=BC=3,B′C′=AC=1,
∴点B′的坐标为(2,1).

点评 本题考查了坐标与图形变化-旋转:图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.常见的是旋转特殊角度如:30°,45°,60°,90°,180°.解决本题的关键是把线段的旋转问题转化为直角三角形的问题.

练习册系列答案
相关习题

科目:初中数学 来源: 题型:解答题

20.如图,在菱形ABCD中,∠B=120°,AD=10,AD的中点为P,AC上有动点Q,连接PQ,DQ,求PQ+DQ的最小值,并证明你的结论.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

1.凸四边形ABCD中,AB=3,BC=4,CD=7,则AD边的取值范围为(  )
A.2<AD<7B.2<AD<13C.0<AD<14D.1<AD<13

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

18.若|x-3|+$\sqrt{y-1}$=0,求x2-y2的值.

查看答案和解析>>

科目:初中数学 来源: 题型:选择题

5.已知$\frac{1}{a}$-$\frac{1}{b}$=2,则$\frac{ab}{2a+3ab-2b}$的值为(  )
A.$\frac{1}{2}$B.-$\frac{1}{2}$C.1D.-1

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

15.己知实数m,n满足m-n=$\sqrt{10}$,m2-3n2为素数,若m2-3n2的最大值为a,最小值为b,则a-b的值为11.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

2.已知一次函数y=3x-2和y=x+4的图象分别为直线l1和l2,点A(m,n)在直线l1上,点B(m,h)在直线l2上,试比较n和h的大小.

查看答案和解析>>

科目:初中数学 来源: 题型:解答题

9.已知抛物线y=-$\frac{1}{2}{x^2}$+bx+4上有不同的两点E(6,-k2+1)和F(-4,-k2+1).
(1)求此抛物线的解析式.
(2)如图,抛物线y=-$\frac{1}{2}{x^2}$+bx+4与x轴的正半轴和y轴分别交于点A和点B,M为AB的中点,∠PMQ=45°,MP交y 轴于点C,MQ交x轴于点D.∠PMQ在AB的左侧以M为中心旋转,设AD的长为m(m>0),BC的长为n,求n和m之间的函数关系式.
(3)在(2)的条件下,当m、n为何值时,∠PMQ的边过点F.

查看答案和解析>>

科目:初中数学 来源: 题型:填空题

10.花盆摆放的图案如图所示:“○”表示红色郁金香,“□”表示黄色郁金香,请你仔细观察花盆摆放的规律,可得出前n行共有$\frac{1}{2}$n(n+1)盆红色郁金香和n(n+1)黄色郁金香.

查看答案和解析>>

同步练习册答案