【题目】如图所示,用3根火柴可拼成1个三角形,5根火柴可拼成2个三角形,7根火柴可拼成3个三角形……,按这个规律拼,用99根火柴可拼成____个三角形.
科目:初中数学 来源: 题型:
【题目】已知:甲乙两车分别从相距300千米的A,B两地同时出发相向而行,其中甲到达B地后立即返回,如图是它们离各自出发地的距离y(千米)与行驶时间x(小时)之间的函数图象.
(1)求甲车离出发地的距离y甲(千米)与行驶时间x(小时)之间的函数关系式,并写出自变量的取值范围;
(2)若已知乙车行驶的速度是40千米/小时,它们在行驶过程中何时相遇?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】弹簧挂上物体后会伸长,已知一弹簧的长度(cm)与所挂物体的质量(kg)之间的关系如表所示.
所挂物体的质量 | 0 | 1 | 2 | 3 | 4 | 5 | 6 | 7 |
弹簧的长度 | 12 | 12.5 | 13 | 13.5 | 14 | 14.5 | 15 | 15.5 |
(1)上表反映了哪些变量之间的关系?哪个是自变量,哪个是因变量?
(2)当物体的质量为2kg时,弹簧的长度是多少?
(3)当物体的质量逐渐增加时,弹簧的长度怎样变化?
(4)如果物体的质量为xkg,弹簧的长度为ycm,根据上表写出y与x的关系式;
(5)当物体的质量为2.5kg时,根据(4)的关系式,求弹簧的长度.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】学校与图书馆在冋一条笔直道路上,甲从学校去图书馆,乙从图书馆回学校,甲、乙两人都匀速步行且同时出发,乙先到达日的地.两人之间的距离y(米)与时间t(分钟)之间的函数关系如图所示.
(1)根据图象信息,当t= 分钟时甲乙两人相遇,乙的速度为 米/分钟;
(2)求点A的坐标.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,在平面直角坐标系中,抛物线y=ax2+bx+c经过A(-3,0)、B(1,0)、C(0,3)三点,其顶点为D,连接AD,点P是线段AD上一个动点(不与A、D重合),过点P作y轴的垂线,垂足点为E,连接AE.
(1)求抛物线的函数解析式,并写出顶点D的坐标;
(2)如果P点的坐标为(x,y),△PAE的面积为S,求S与x之间的函数关系式,直接写出自变量x的取值范围,并求出S的最大值;
(3)在(2)的条件下,当S取到最大值时,过点P作x轴的垂线,垂足为F,连接EF,把△PEF沿直线EF折叠,点P的对应点为点P′,求出P′的坐标,并判断P′是否在该抛物线上.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】为了发展校园足球运动,某城区五校决定联合购买一批足球服和足球.经过市场调查发现:甲、乙两商场以同样的价格出售同种品牌的足球服和足球,已知每套足球服比每个足球多60元,两套足球服与三个足球的费用相等.经洽谈,甲商场的优惠方案是:每购买20套足球服,送一个足球;乙商场的优惠方案是:若购买足球服超过80套,则购买的足球打八折,若购买足球服不超过80套,不打折.
(1)求每套足球服和每个足球的价格各是多少元;
(2)若城区五校联合购买120套足球服和()个足球,假如你是本次购买任务的负责人,你会选择到甲、乙两家中的哪一家商场购买更便宜?请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】定义:若,且,则我们称是的差余角.例如:若,则的差余角.
(1)如图1,点在直线上,射线是的角平分线,若是的差余角,求的度数.
(2)如图2,点在直线上,若是的差余角,那么与有什么数量关系.
(3)如图3,点在直线上,若是的差余角,且与在直线的同侧,请你探究是否为定值?若是,请求出定值;若不是,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】将一副三角板中的两块直角三角尺的直角顶点C按如图所示的方式叠放在一起(其中,,;).
(1)①若,则的度数为_____________;
②若,则的度数为_____________.
(2)由(1)猜想与的数量关系,并说明理由.
(3)当且点E在直线AC的上方时,这两块三角尺是否存在一组边互相平行?若存在,请写出角度所有可能的值(不必说明理由);若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学库存若干套桌椅,准备修理后支援贫困山区学校。现有甲、乙两木工组,甲每天修理桌椅16套,乙每天修桌椅比甲多8套,甲单独修完这些桌椅比乙单独修完多用20天,学校每天付甲组80元修理费,付乙组120元修理费。
(1)该中学库存多少套桌椅?
(2)在修理过程中,学校要派一名工人进行质量监督,学校负担他每天10元生活补助费,现有三种修理方案:a、由甲单独修理;b、由乙单独修理;c、甲、乙合作同时修理。你认为哪种方案省时又省钱?为什么?
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com