【题目】定义:若,且,则我们称是的差余角.例如:若,则的差余角.
(1)如图1,点在直线上,射线是的角平分线,若是的差余角,求的度数.
(2)如图2,点在直线上,若是的差余角,那么与有什么数量关系.
(3)如图3,点在直线上,若是的差余角,且与在直线的同侧,请你探究是否为定值?若是,请求出定值;若不是,请说明理由.
【答案】(1)30°;(2)+=90°;(3)为定值2,理由见解析
【解析】
(1)根据差余角的定义,结合角平分线的性质可得的度数;
(2)根据差余角的定义得到和的关系,
(3)分当OE在OC左侧时,当OE在OC右侧时,根据差余角的定义得到和的关系,再结合余角和补角的概念求出的值.
解:(1)如图,∵是的差余角
∴-=90°,
即=+90°,
又∵是的角平分线,
∴∠BOE=,
则+90°++=180°,
解得=30°;
(2)∵是的差余角,
∴-=90°,
∵=+,=+,
∴-=90°,
∵=180°-,
∴180°--=90°,
∴+=90°;
(3)当OE在OC左侧时,
∵是的差余角,
∴-=90°,
∴∠AOE=∠BOE=90°,
则
=
=
=2;
当OE在OC右侧时,
过点O作OF⊥AB,
∵是的差余角,
∴=90°+,
又∵=90°+,
∴=,
∴
=
=
=
=
=2.
综上:为定值2.
科目:初中数学 来源: 题型:
【题目】如图,已知平面直角坐标系中,、,现将线段绕点顺时针旋转得到点,连接.
(1)求出直线的解析式;
(2)若动点从点出发,沿线段以每分钟个单位的速度运动,过作交轴于,连接.设运动时间为分钟,当四边形为平行四边形时,求的值.
(3)为直线上一点,在坐标平面内是否存在一点,使得以、、、为顶点的四边形为菱形,若存在,求出此时的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在某地,人们发现某种蟋蟀1min,所叫次数x与当地温度T之间的关系或为T=ax+b,下面是蟋蟀所叫次数与温度变化情况对照表:
蟋蟀叫的次数(x) | … | 84 | 98 | 119 | … |
温度(℃)T | … | 15 | 17 | 20 | … |
①根据表中的数据确定a、b的值.
②如果蟋蟀1min叫63次,那么该地当时的温度约为多少摄氏度?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,用3根火柴可拼成1个三角形,5根火柴可拼成2个三角形,7根火柴可拼成3个三角形……,按这个规律拼,用99根火柴可拼成____个三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在三角形中,,,.点从点出发以2个单位长度/秒的速度沿的方向运动,点从点沿的方向与点同时出发;当点第一次回到点时,点,同时停止运动;用(秒)表示运动时间.
(1)当为多少时,是的中点;
(2)若点的运动速度是个单位长度/秒,是否存在的值,使得;
(3)若点的运动速度是个单位长度/秒,当点,是边上的三等分点时,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点O是矩形ABCD的中心,E是AB上的点,沿CE折叠后,点B恰好与点O重合,若BC=3,则折痕CE的长为( )
A. B. C. D. 6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,某湖上风景区有两个观望点A,C和两个度假村B、D;度假村D在C正西方向,度假村B在C的南偏东方向,度假村B到两个观望点的距离都等于2km.
(1)在图中标出A、B、C、D的位置,并写出道路CD与CB的夹角.
(2)如果度假村D到C是直公路,长为1km,D到A是环湖路,度假村B到两个观望点的总路程等于度假村D到两个观望点的总路程.求出环湖路的长.
(3)根据题目中的条件,能够判定吗?若能,请写出判断过程;若不能,请你添加一个条件,判定.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知DB∥AC,E是AC的中点,DB=AE,连结AD、BE.
(1)求证:四边形DBCE是平行四边形;
(2)若要使四边形ADBE是矩形,则△ABC应满足什么条件?说明你的理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将边长为的正方形的边长增加,得到一个边长为的正方形.在图1的基础上,某同学设计了一个解释验证的方案(详见方案1)
方案1.如图2,用两种不同的方式表示边长为的正方形的面积.
方式1:
方式2:
因此,
(1)请模仿方案1,在图1的基础上再设计一种方案,用以解释验证;
(2)如图3,在边长为的正方形纸片上剪掉边长为的正方形,请在此基础上再设计一个方案用以解释验证.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com