【题目】如图,点E是正方形ABCD中CD上的一点,把△ADE绕点A顺时针旋转90°到△ABF的位置,若四边形AECF的面积为16,DE=1,则EF的长是( )
A.4B.5C.2D.
科目:初中数学 来源: 题型:
【题目】在数学课上,老师提出如下问题:如何使用尺规完成“过直线l外一点P作已知直线l的平行线”.
小明的作法如下:
①在直线l上取一点A,以点A为圆心,AP长为半径作弧,交直线l于点B;
②分别以P,B为圆心,以AP长为半径作弧,两弧相交于点Q(与点A不重合);
③作直线PQ.所以直线PQ就是所求作的直线.根据小明的作图过程,
(1)使用直尺和圆规,补全图形;(保留作图痕迹)
(2)完成下面的证明.
证明:∵AB=AP= = .
∴四边形ABQP是菱形( )(填推理的依据).
∴PQ∥l.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,AB是圆O的直径,点C、D在圆O上,且AD平分∠CAB.过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F.
(1)求证:EF与圆O相切;
(2)若AB=6,AD=4,求EF的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】(1)问题发现
如图1,在△OAB和△OCD中,OA=OB,OC=OD,∠AOB=∠COD=40°,连接AC,BD交于点M.填空:
①的值为 ;
②∠AMB的度数为 .
(2)类比探究
如图2,在△OAB和△OCD中,∠AOB=∠COD=90°,∠OAB=∠OCD=30°,连接AC交BD的延长线于点M.请判断的值及∠AMB的度数,并说明理由;
(3)拓展延伸
在(2)的条件下,将△OCD绕点O在平面内旋转,AC,BD所在直线交于点M,若OD=1,OB=,请直接写出当点C与点M重合时AC的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,,.
(1)如图1,若,,求的面积.
(2)如图2,若为线段上任意一点,探究,,三者之间的关系,并证明.
(3)如图3,若,为内一点,求的最小值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】有一块矩形铁皮,长12dm,宽4dm,在它的四角各切去一个同样的正方形,然后将四周突出部分折起,制作一个无盖方盒,如果要使制作的无盖方盒的侧面积.占矩形铁皮面积的八分之五,设各角切去的正方形的边长为xdm.
(1)用含x的代数式表示,盒底的长为______dm,盒底的宽为______dm;
(2)求x的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在反比例函数y= 的图象上有一动点A,连接AO并延长交图象的另一支于点B,在第二象限内有一点C,满足AC=BC,当点A运动时,点C始终在函数y= 的图象上运动,若tan∠CAB=2,则k的值为( )
A. ﹣3 B. ﹣6 C. ﹣9 D. ﹣12
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】小明根据学习函数的经验,对函数y=+1的图象与性质进行了探究.下面是小明的探究过程,请补充完整:
(1)函数y=+1的自变量x的取值范围是 ;
(2)如表列出了y与x的几组对应值,请写出m,n的值:m= ,n= ;
x | … | ﹣ | ﹣1 | ﹣ | 0 | 2 | 3 | … | ||||
y | … | m | 0 | ﹣1 | n | 2 | … |
(3)在如图所示的平面直角坐标系中,描全上表中以各对对应值为坐标的点,并画出该函数的图象.
(4)结合函数的图象,解决问题:
①写出该函数的一条性质: .
②当函数值+1>时,x的取值范围是: .
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角标系中,抛物线C:y=与x轴交于A、B两点(点A在点B的左侧),与y轴交于点C,点D为y轴正半轴上一点.且满足OD=OC,连接BD,
(1)如图1,点P为抛物线上位于x轴下方一点,连接PB,PD,当S△PBD最大时,连接AP,以PB为边向上作正△BPQ,连接AQ,点M与点N为直线AQ上的两点,MN=2且点N位于M点下方,连接DN,求DN+MN+AM的最小值
(2)如图2,在第(1)问的条件下,点C关于x轴的对称点为E,将△BOE绕着点A逆时针旋转60°得到△B′O′E′,将抛物线y=沿着射线PA方向平移,使得平移后的抛物线C′经过点E,此时抛物线C′与x轴的右交点记为点F,连接E′F,B′F,R为线段E’F上的一点,连接B′R,将△B′E′R沿着B′R翻折后与△B′E′F重合部分记为△B′RT,在平面内找一个点S,使得以B′、R、T、S为顶点的四边形为矩形,求点S的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com