【题目】随着人民生活水平不断提高,我市 “初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.
问 (1)这次调查的学生家长总人数为 .
(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.
(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.
(4)该校共有学生1200人,求赞同的家长的人数。
【答案】(1)200人;(2)20%;(3)36°;(4)480人
【解析】
(1)观察统计图,利用反对的人数除以它所占的百分比即可得到调查的总人数;
(2)用总人数分别减去赞同、无所谓、反对的家长人数即可得到“很赞同”态度的学生家长数,再计算出它所占的百分比,然后补全条形统计图;
(3)用360°乘以持“无所谓”态度的百分比即可;
(4)用样本中持“很赞同”态度的百分比乘以14.7万可估计该市初中生家长中持“很赞同”态度的人数.
解:(1)60÷30%=200(人),
所以这次调查的学生家长总人数为200;
故答案为200;
(2)持“很赞同”态度的学生家长数为200-80-20-60=40(人),
所以持“很赞同”态度的学生家长占被调查总人数的百分比=×100%=20%,
条形统计图为:
(3)扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数= ×360°=36°;
(4)赞同的家长的人数:1200× =480人
答:赞同的价值480人.
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线l:与x轴交于点B1,以OB1为边长作等边△A1OB1,过点A1作A1B2平行于x轴,交直线l于点B2,以A1B2为边长作等边△A2A1B2,过点A2作A2B3平行于x轴,交直线l于点B3,以A2B3为边长作等边△A3A2B3,…,则点A2 018的横坐标是_____________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,点F从菱形ABCD的顶点A出发,沿A→D→B以1cm/s的速度匀速运动到点B,图2是点F运动时,△FBC的面积y(cm2)随时间x(s)变化的关系图象,则a的值为( )
A. B. 2 C. D. 2
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=2,与x轴的一个交点坐标(4,0),其部分图象如图所示,下列结论:①抛物线过原点;②a﹣b+c<0;③4a+b+c=0;④抛物线的顶点坐标为(2,b);⑤当x<1时,y随x增大而增大.其中结论正确的是( )
A. ①②③ B. ①④⑤ C. ①③④ D. ③④⑤
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).
(1)求C1的解析式.
(2)求抛物线C1关于直线y=3的对称抛物线的解析式;设C2交x轴于点D和点E(点D在点E的左边),求点D和点E的坐标.
(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.
(4)直接写出抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在中,点、分别在边、上,根据下列给定的条件,不能判断与平行的是( )
A. AD=6,BD=4,AE=2.4,CE=1.6
B. BD=2,AB=6,CE=1,AC=3;
C. AD=4,AB=6,DE=2,BC=3;
D. AD=4,AB=6,AE=2,AC=3.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:和均为等腰直角三角形,,,,连接.
(1)如图1所示,线段与的数量关系是_____,位置关系是_____;
(2)在图1中,若点M、P、N分别为的中点,连接,请判断的形状,并说明理由;
(3)如图2所示,若M、N、P分别为上的点,且满足,,连接,则线段长度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】近些年来,“校园安全”受到全社会的广泛关注,为了了解学生对于安全知识的了解程度,学校采用随机抽样的调查方式,根据收集到的信息进行统计,绘制了下面两幅尚不完整的统计图.
请你根据统计图中所提供的信息解答下列问题:
(1)接受问卷调查的学生共有________人.
(2)请补全条形统计图;
(3)若从对校园安全知识达到了“了解”程度的3个女生和2个男生中随机抽取2人参加校园安全知识竞赛,请用树状图或列表法求出恰好抽到1个男生和1个女生的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,∠ABC=90°.
(1)如图1,分别过A、C两点作经过点B的直线的垂线,垂足分别为M、N,求证:△ABM∽△BCN;
(2)如图2,P是边BC上一点,∠BAP=∠C,tan∠PAC=,求tanC的值;
(3)如图3,D是边CA延长线上一点,AE=AB,∠DEB=90°,sin∠BAC=,,直接写出tan∠CEB的值.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com