【题目】如图,已知抛物线C1交直线y=3于点A(﹣4,3),B(﹣1,3),交y轴于点C(0,6).
(1)求C1的解析式.
(2)求抛物线C1关于直线y=3的对称抛物线的解析式;设C2交x轴于点D和点E(点D在点E的左边),求点D和点E的坐标.
(3)将抛物线C1水平向右平移得到抛物线C3,记平移后点B的对应点B′,若DB平分∠BDE,求抛物线C3的解析式.
(4)直接写出抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式.
【答案】(1)C1的解析式为y=x2+x+6;(2)抛物线C2的解析式为y=﹣x2﹣x,D(﹣5,0),E(0,0);(3)抛物线C3的解析式为y=;(4)y=x2x+2n﹣6.
【解析】
(1)设抛物线C1经的解析式为y=ax2+bx+c,将点A、B、C的坐标代入求解即可得到解析式;
(2)先求出点C关于直线y=3的对称点的坐标为(0,0),设抛物线C2的解析式为y=a1x2+b1x+c1,即可求出答案;
(3)如图,根据平行线的性质及角平分线的性质得到BB′=DB,利用勾股定理求出DB的长度即可得到抛物线平移的距离,由此得到平移后的解析式;
(4)设抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式为y=mx+nx+k,根据对称性得到m、n的值,再利用对称性得到新函数与y轴交点坐标得到k的值,由此得到函数解析式.
(1)设抛物线C1经的解析式为y=ax2+bx+c,
∵抛物线C1经过点A(﹣4,3),B(﹣1,3),C(0,6).
∴,
解得,
∴C1的解析式为y=x2+x+6;
(2)∵C点关于直线y=3的对称点为(0,0),
设抛物线C2的解析式为y=a1x2+b1x+c1,
∴,
解得,
∴抛物线C2的解析式为y=﹣x2﹣x;
令y=0,则﹣x2﹣x=0,
解得x1=0,x2=﹣5,
∴D(﹣5,0),E(0,0);
(3)如图,
∵DB′平分∠BDE,
∴∠BDB′=∠ODB′,
∵AB∥x轴,
∴∠BB′D=∠ODB′,
∴∠BDB′=∠BB′D,
∴BB′=DB,
∵BD==5,
∴将抛物线C1水平向右平移5个单位得到抛物线C3,
∵C1的解析式为y=x2+x+6=(x+)2+,
∴抛物线C3的解析式为y=(x+﹣5)2+=;
(4)设抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式为y=mx+nx+k,
根据对称性得:新抛物线的开口方向与原抛物线的开口方向相反,开口大小相同,故m=-,对称轴没有变化,故n=-,
当n>6时,n+(n-6)=2n-6,故新抛物线与y轴的交点为(0,2n-6),
当n<6时,n-(6-n)=2n-6,新抛物线与y轴的交点为(0,2n-6),
∴k=2n-6,
∴抛物线C1关于直线y=n(n 为常数)对称的抛物线的解析式为:y=﹣x2﹣x+2n﹣6.
科目:初中数学 来源: 题型:
【题目】有A、B两组卡片共5张,A组的三张分别写有数字2,4,6,B组的两张分别写有3,5.它们除了数字外没有任何区别,
(1)随机从A组抽取一张,求抽到数字为2的概率;
(2)随机地分别从A组、B组各抽取一张,请你用列表或画树状图的方法表示所有等可能的结果.现制定这样一个游戏规则:若选出的两数之积为3的倍数,则甲获胜;否则乙获胜.请问这样的游戏规则对甲乙双方公平吗?为什么?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知△ABC的顶点B在⊙O上. AC经过圆心0并与圆相交于点D,C,过C作直线CE丄AB,交AB的延长线于点E,且CB平分∠ACE.
(1)求证:AB是圆O的切线;
(2)若BE=3,CE=4,求圆O的半径.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】央视“经典咏流传”开播以来受到社会广泛关注.我市某校就“中华文化我传承——地方戏曲进校园”的喜爱情况进行了随机调查,对收集的信息进行统计,绘制了下面两副尚不完整的统计图.请你根据统计图所提供的信息解答下列问题:
图中A表示“很喜欢”,B表示“喜欢”,C表示“一般”,D表示“不喜欢”.
(1)被调查的总人数是_____________人,扇形统计图中C部分所对应的扇形圆心角的度数为_______.
(2)补全条形统计图;
(3)若该校共有学生1800人,请根据上述调查结果,估计该校学生中A类有__________人;
(4)在抽取的A类5人中,刚好有3个女生2个男生,从中随机抽取两个同学担任两角色,用树形图或列表法求出被抽到的两个学生性别相同的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,△ABC中,∠ACB=90°,∠BAC=20°,点O是AB的中点,将OB绕点O顺时针旋转α角时(0°<α<180°),得到OP,当△ACP为等腰三角形时,α的值为_____.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着人民生活水平不断提高,我市 “初中生带手机”现象也越来越多,为了了解家长对此现象的态度,某校数学课外活动小组随机调查了若干名学生家长,并将调查结果进行统计,得出如下所示的条形统计图和扇形统计图.
问 (1)这次调查的学生家长总人数为 .
(2)请补全条形统计图,并求出持“很赞同”态度的学生家长占被调查总人数的百分比.
(3)求扇形统计图中表示学生家长持“无所谓”态度的扇形圆心角的度数.
(4)该校共有学生1200人,求赞同的家长的人数。
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,AD、BD分别是的内角∠BAC、∠ABC的平分线,过点A作AE⊥AD,交BD的延长线于点E.
(1)求证:;
(2)如图2,如果AE=AB,且BD:DE=2:3,求BC:AB的值;
(3)如果∠ABC是锐角,且与相似,求∠ABC的度数,并直接写出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,⊙O的圆心O在△ABC的边AC上,AC与⊙O分别交于C,D两点,⊙O与边AB相切,且切点恰为点B.
(1)求证:∠A+2∠C=90°;
(2)若∠A=30°,AB=6,求图中阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知:关于x的二次函数的图象与x轴交于点A(1,0)和点B,与y轴交于点C(0,3),抛物线的对称轴与x轴交于点D.
(1)求二次函数的表达式;
(2)在y轴上是否存在一点P,使△PBC为等腰三角形.若存在,请求出点P的坐标;
(3)有一个点M从点A出发,以每秒1个单位的速度在AB上向点B运动,另一个点N从点D与点M同时出发,以每秒2个单位的速度在抛物线的对称轴上运动,当点M到 达点B时,点M、N同时停止运动,问点M、N运动到何处时,△MNB面积最大,试求出最大面积.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com