【题目】如图,正方形两条对角线、交于,过任作一直线与边,交于,,的垂直平分线与边,交于,.设正方形的面积为,四边形的面积为.
(1)求证:四边形是正方形;
(2)若,求的取值范围.
【答案】(1)证明见解析;(2).
【解析】
(1)先根据正方形的性质和垂直平分线的定义证明≌,可得,再根据等边对等角证明,同理可证,由此可证四边形是矩形,而又,所以可证矩形是正方形.
(2)设,则,根据勾股定理表示,即可表示,再根据函数最值结合图形,即可确定的取值范围.
解:(1)证明:∵四边形为正方形,
∴AC⊥BD,∠OAQ=∠ODN=45°,OA=OD,
∴∠AOQ+∠DOQ=90°,
∵垂直平分线段,
∴∠QON=90°,,
∴∠DON+∠DOQ=90°,
∴∠DON=∠AOQ,
在△AOQ和△DON中,
∵
∴≌,
∴,
∴,
同理可得,
∴,
∴四边形是矩形,而,
∴四边形是正方形.
(2)∵≌,
∴AQ=DN,
设,则,
∴
而,
∴.
科目:初中数学 来源: 题型:
【题目】某商场计划购进一批甲、乙两种玩具,已知一件甲种玩具的进价与一件乙种玩具的进价的和为40元,用90元购进甲种玩具的件数与用150元购进乙种玩具的件数相同.
(1)求每件甲种、乙种玩具的进价分别是多少元?
(2)商场计划购进甲、乙两种玩具共48件,其中甲种玩具的件数少于乙种玩具的件数,商场决定此次进货的总资金不超过1000元,求商场共有几种进货方案?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,直线与函数的图象交于,两点,且点的坐标为.
(1)求的值;
(2)已知点,过点作平行于轴的直线,交直线于点,交函数的图象于点.
①当时,求线段的长;
②若,结合函数的图象,直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线交轴正半轴于点将抛物线平移得到拋物线与交于点,直线交于点,点的横坐标为,且.
直接写出点,点的坐标.求抛物线的表达式.
点是抛物线上间--点,作轴交抛物线于点,连结,设点的横坐标为当为何值时,使的面积最大,并求出最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,一次函数的图象与反比例函数()的图象交于,两点.
(1)求的值;
(2)求出一次函数与反比例函数的表达式;
(3)过点作轴的垂线,与直线和函数()的图象的交点分别为点,,当点在点下方时,写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某商场销售一批名牌衬衫,平均每天可售出件,每件盈利元,为了扩大销售,增加盈利,尽快减少库存,商场决定采取适当的降价措施.经调查发现,如果每件衬衫每降价元,商场平均每天可多售出件,若商场平均每天要盈利元,每件衬衫应降价多少元?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】我们做如下的规定:如果一个三角形在运动变化时保持形状和大小不变,则把这样的三角形称为三角形板.
把两块边长为4的等边三角形板和叠放在一起,使三角形板的顶点与三角形板的AC边中点重合,把三角形板固定不动,让三角形板绕点旋转,设射线与射线相交于点M,射线与线段相交于点N.
(1)如图1,当射线经过点,即点N与点重合时,易证△ADM∽△CND.此时,AM·CN= .
(2)将三角形板由图1所示的位置绕点沿逆时针方向旋转,设旋转角为.其中,问AM·CN的值是否改变?说明你的理由.
(3)在(2)的条件下,设AM= x,两块三角形板重叠面积为,求与的函数关系式.(图2,图3供解题用)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,矩形 ABCD 中,AB=8,BC=4.点 E 在边 AB 上,点 F 在边 CD 上,点 G、H 在对角线 AC 上.若四边形 EGFH 是菱形,则 AE 的长是( )
A.2B.3C.5D.6
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在每个小正方形的边长均为1的方格纸中有线段AB和CD,点A、B、C、D均在小正方形的顶点上.
(1)画出一个以AB为一边的△ABE,点E在小正方形的顶点上,且∠BAE=45°,△ABE的面积为;
(2)画出以CD为一腰的等腰△CDF,点F在小正方形的顶点上,且△CDF的面积为;
(3)在(1)、(2)的条件下,连接EF,请直接写出线段EF的长.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com