【题目】如图,点C,D是半圆O上的三等分点,直径AB=4,连接AD,AC,作DE⊥AB,垂足为E,DE交AC于点F.
(1)求证:AF=DF.
(2)求阴影部分的面积(结果保留π和根号)
【答案】(1)证明见解析;(2);
【解析】
(1)连接OD,OC,根据已知条件得到∠AOD=∠DOC=∠COB=60°,根据圆周角定理得到∠CAD=∠ADE=30°,于是得到结论;
(2)由(1)知,∠AOD=60°,推出△AOD是等边三角形,OA=2,得到DE= ,根据扇形和三角形的面积公式即可得到结论
(1)证明:连接OD,OC,
∵C、D是半圆O上的三等分点,
∴==,度数都是60°,
∴∠AOD=∠DOC=∠COB=60°,
∴∠DAC=30°,∠CAB=30°,
∵DE⊥AB,
∴∠AEF=90°,
∴∠ADE=180°﹣90°﹣30°﹣30°=30°,
∴∠DAC∠ADE=30°,
∴AF=DF;
(2)解:由(1)知,∠AOD=60°,
∵OA=OD,AB=4,
∴△AOD是等边三角形,OA=2,
∵DE⊥AO,
∴DE=,
∴S阴影=S扇形AOD﹣S△AOD=.
科目:初中数学 来源: 题型:
【题目】如图,已知:在平面直角坐标系中,每个小正方形的边长为1,△ABC的顶点都在格点上,点A的坐标为(-3,2).请按要求分别完成下列各小题:
(1)把△ABC向下平移7个单位,再向右平移7个单位,得到△A1B1C1,画出△A1B1C1;
(2)画出△A1B1C1关于x轴对称的△A2B2C2;
画出△A1B1C1关于y轴对称的△A3B3C3;
(3)求△ABC的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在△ABC中,AB=6,AC=BC=5,将△ABC绕点A按顺时针方向旋转,得到△ADE,旋转角为α(0°<α<180°),点B的对应点为点D,点C的对应点为点E,连接BD,BE.
(1)如图,当α=60°时,延长BE交AD于点F.
①求证:△ABD是等边三角形;
②求证:BF⊥AD,AF=DF;
③请直接写出BE的长;
(2)在旋转过程中,过点D作DG垂直于直线AB,垂足为点G,连接CE,当∠DAG=∠ACB,且线段DG与线段AE无公共点时,请直接写出BE+CE的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】古代名著《算学启蒙》中有一题:“良马日行二百四十里.驽马日行一百五十里.驽马先行十二日,问良马几日追及之”,如图是两马行走的路程关于时间的函数图像.
(1)的函数解析式为_______.
(2)求点的坐标.
(3)若两匹马先在甲站,再从甲站出发行往乙站,并停留在乙站,且甲、乙两站之间的路程为里,请问为何值时,驽马与良马相距里?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在大课间活动中,同学们积极参加体育锻炼,小明在全校随机抽取一部分同学就“我最喜欢的体育项目”进行了一次抽奖调查.下图是他通过收集的数据绘制的两幅不完整的统计图,请你根据图中提供的信息,解答下列问题:
(1)小明共抽取_____名学生;
(2)补全条形统计图;
(3)在扇形统计图中,“立定跳远”部分对应的圆心角的度数是_______;
(4)若全校共有人,请你估算“其他”部分的学生人数.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图①,AE是⊙O的直径,点C是⊙O上的点,连结AC并延长AC至点D,使CD=CA,连结ED交⊙O于点B.
(1)求证:点C是劣弧的中点;
(2)如图②,连结EC,若AE=2AC=6,求阴影部分的面积.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图所示,AB是半圆O的直径,AC是弦,点P沿BA方向,从点B运动到点A,速度为1cm/s,若AB=10cm,点O到AC的距离为4cm.
(1)求弦AC的长;
(2)问经过多长时间后,△APC是等腰三角形.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,左、右并排的两棵树AB和CD,小树的高AB=6m,大树的高CD=9m,小明估计自己眼睛距地面EF=1.5m,当他站在F点时恰好看到大树顶端C点.已知此时他与小树的距离BF=2m,则两棵树之间的距离BD是( )
A. 1m B. m C. 3m D. m
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com