给出定义,若一个四边形中存在相邻两边的平方和等于一条对角线的平方,则称该四边形为勾股四边形.
(1)在你学过的特殊四边形中,写出两种勾股四边形的名称;
(2)如图,将△ABC绕顶点B按顺时针方向旋转60°得到△DBE,连接AD,DC,CE,已知∠DCB=30°.
①求证:△BCE是等边三角形;
②求证:DC2+BC2=AC2,即四边形ABCD是勾股四边形.
![]()
(1)正方形、矩形、直角梯形均可;
(2)①证明见解析
②证明见解析
【解析】
试题分析:(1)由勾股四边形的定义和特殊四边形的性质,则可得出;
(2)①由旋转的性质可知△ABC≌△DBE,从而可得BC=BE,由∠CBE=60°可得△BCE为等边三角形;
②由①可得∠BCE=60°,从而可知△DCE是直角三角形,再利用勾股定理即可解决问题.
试题解析:(1)正方形、矩形、直角梯形均可;
(2)①∵△ABC≌△DBE,
∴BC=BE,
∵∠CBE=60°,
∴△BCE是等边三角形;
②由①△BCE为等边三角形,
∴BC=CE,∠BCE=60°,
∵∠DCB=30°,
∴∠DCE=90°,
在Rt△DCE中,
DC2+CE2=DE2,
∴DC2+BC2=AC2.
考点:1、阅读题;2、旋转的性质;3、等边三角形的判定与性质
科目:初中数学 来源:2014年初中毕业升学考试(福建南平卷)数学(解析版) 题型:填空题
如图,等圆⊙O1与⊙O2相交于A、B两点,⊙O1经过⊙O2的圆心O2,点A在x轴的正半轴上,两圆分别与x轴交于C、D两点,y轴与⊙O2相切于点O1,点O1在y轴的负半轴上.
①四边形AO1BO2为菱形;
②点D的横坐标是点O2的横坐标的两倍;
③∠ADB=60°;
④△BCD的外接圆的圆心是线段O1O2的中点.
以上结论正确的是 .
(写出所有正确结论的序号)
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(福建三明卷)数学(解析版) 题型:选择题
下列计算正确的是( )
A.(a3)2=a5 B.a6÷a3=a2 C.(ab)2=a2b2 D.(a+b)2=a2+b2
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(甘肃天水卷)数学(解析版) 题型:选择题
将二次函数y=x2的图象向右平移1个单位,再向上平移2个单位后,所得图象的函数表达式是( )
A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=(x﹣1)2﹣2 D.y=(x+1)2﹣2
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(甘肃兰州卷)数学(解析版) 题型:解答题
如图,在△ABC中,先作∠BAC的角平分线AD交BC于点D,再以AC边上的一点O为圆心,过A、D两点作⊙O(用尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(甘肃兰州卷)数学(解析版) 题型:选择题
如图,在平面直角坐标系中,四边形OBCD是边长为4的正方形,平行于对角线BD的直线l从O出发,沿x轴正方向以每秒1个单位长度的速度运动,运动到直线l与正方形没有交点为止.设直线l扫过正方形OBCD的面积为S,直线l运动的时间为t(秒),下列能反映S与t之间函数关系的图象是( )
![]()
![]()
A B C D
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南长沙卷)数学(解析版) 题型:解答题
如图,以△ABC的一边AB为直径作⊙O,⊙O与BC边的交点恰好为BC的中点D,过点D作⊙O的切线交AC于点E.
(1)求证:DE⊥AC;
(2)若AB=3DE,求tan∠ACB的值.
![]()
查看答案和解析>>
科目:初中数学 来源:2014年初中毕业升学考试(湖南郴州卷)数学(解析版) 题型:填空题
根据相关部门统计,2014年我国共有9390000名学生参加高考,9390000用科学记数法表示为 .
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com