精英家教网 > 初中数学 > 题目详情
(2013•黄陂区模拟)已知一个二次函数的图象经过A(4,3),B(1,0),C(-1,8)三点,求这个二次函数解析式.
分析:先设二次函数解析式为y=ax2+bx+c(a≠0),然后利用待定系数法,把点A(4,3),B(1,0),C(-1,8)代入该解析式,列出关于系数的三元一次方程组,通过解方程组可求得二次函数的解析式..
解答:解:设二次函数解析式为y=ax2+bx+c(a≠0).
∵二次函数的图象经过A(4,3),B(1,0),C(-1,8)三点,
16a+4b+c=3
a+b+c=0
a-b+c=8

解得,
a=1
b=-4
c=3

则该二次函数的解析式是:y=x2-4x+3.
点评:本题考查了待定系数法求二次函数的解析式.已知函数类型,常用待定系数法求其解析式.熟练掌握求解析式的常用方法是解决该类问题的基础.
练习册系列答案
相关习题

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)用配方法求y=x2-2x-3的顶点坐标,变形正确的是(  )

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)从4、5、6三个数中,任取两个不同的数字组成一个两位数,能被3整除的概率是
1
3
1
3

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)已知⊙O1的半径是13,⊙O2的半径是15,⊙O1和⊙O2交于A、B两点.AB=24,则O1O2的长度是
4或14
4或14

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)正△ABC的两边上的点M,N满足BM=AN,BN交于CN于点E
(1)求证:BM2=ME•MC;
(2)△BCE沿着BC向下翻折到△BCF,延长CF和BF交AB于P,交AC于K,若正△ABC边长是10,求BP•CK的值;
(3)当E为BN的中点时,
BM
MA
=
5
-1
2
5
-1
2
(直接写出比值)

查看答案和解析>>

科目:初中数学 来源: 题型:

(2013•黄陂区模拟)已知:抛物线y=x2+mx+n的顶点D(1,-4)抛物线与坐标轴的交点为A,B,C,
(1)求抛物线的解析式,并求出A,B,C,的坐标;
(2)作如图所示四个顶点在△ABC三边上的矩形EFGH.求矩形EFGH的最大面积;
(3)MN=
2
,MN是直线y=-x上的一条动线段,当四边形AMNC的周长最小时,求N的坐标.

查看答案和解析>>

同步练习册答案