【题目】现如今,“垃圾分类”意识已深入人心,垃圾一般可分为:可回收物、厨余垃圾、有害垃圾、其他垃圾. 现有甲、乙二人,其中甲拿了一袋垃圾,乙拿了两袋垃圾.
(1)直接写出甲所拿的垃圾恰好是“厨余垃圾”的概率.
(2)用画树状图或列表的方法求乙所拿的垃圾不同类的概率.
科目:初中数学 来源: 题型:
【题目】如图1,直线y=x-1交x轴、y轴于A、B点,点P(1,,且S四边形PAOB=3.5,双曲线y=经过点P.
(1)求k的值;
(2)如图2,直线)交射线BA于E,交双曲线y=于F,将直线向右平移4个单位长度后交射线于,交双曲线y=于,若,求的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知:如图,在四边形ABCD中,AB⊥AC,DC⊥AC,∠B=∠D,,,,点E,F分别是BC,AD的中点.
(1)求证:;
(2)当与满足什么数量关系时,四边形是正方形?请证明.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,小聪用一张面积为1的正方形纸片,按如下方式操作:
①将正方形纸片四角向内折叠,使四个顶点重合,展开后沿折痕剪开,把四个等腰直角三角形扔掉;
②在余下纸片上依次重复以上操作,
当完成第2020次操作时,余下纸片的面积为( )
A.22019B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在ABC中,∠A=90°,AB=3,AC=4,点M、Q分别是边AB、BC上的动点(点M不与A、B重合),且MQ⊥BC,过点M作MN∥BC.交AC于点N,连接NQ,设BQ=x.
(1)是否存在一点Q,使得四边形BMNQ为平行四边形,并说明理由;
(2)当BM=2时,求x的值;
(3)当x为何值时,四边形BMNQ的面积最大,并求出最大值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平行四边形ABCD中,按以下步骤作图:①以A为圆心,任意长为半径作弧,分别交AB,AD于点M,N;②分别以M,N为圆心,以大于MN的长为半径作弧,两弧相交于点P;③作AP射线,交边CD于点Q,若DQ=2QC,BC=3,则平行四边形ABCD周长为________.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在平面直角坐标系中,,点的坐标为,抛物线经过两点.
(1)求抛物线的解析式;
(2)点是直线上方抛物线上的一点,过点作轴于点,交线段于点,使.
①求点的坐标和的面积;
②在直线上是否存在点,使为直角三角形?若存在,直接写出符合条件的所有点的坐标;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】随着新农村的建设和旧城的改造,我们的家园越来越美丽,小明家附近广场中央新修了一个圆形喷水池,在水池中心竖直安装了一根高米的喷水管,它喷出的抛物线形水柱在与池中心的水平距离为米处达到最高,水柱落地处离池中心米.
(1)请你建立适当的直角坐标系,并求出水柱抛物线的函数解析式;
(2)求出水柱的最大高度是多少?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点A、B分别在y轴和x轴上,BC⊥AB(点C和点O在直线AB的两侧),点C的坐标为(4,n)过点C的反比例函数y=(x>0)的图象交边AC于点D(n+,3).
(1)求反比例函数的表达式;
(2)求点B的坐标.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com