【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有( )
A.3个B.2个C.1个D.0个
【答案】B
【解析】
首先根据二次函数图象开口方向可得a>0,根据图象与y轴交点可得c<0,再根据二次函数的对称轴x=-,结合图象与x轴的交点可得对称轴为x=1,结合对称轴公式可判断出①的正误;根据对称轴公式结合a的取值可判定出b<0,根据a、b、c的正负即可判断出②的正误;利用a-b+c=0,求出a-2b+4c<0,再利用当x=4时,y>0,则16a+4b+c>0,由①知,b=-2a,得出8a+c>0.
根据图象可得:a>0,c>0,对称轴:.
①∵它与x轴的两个交点分别为(﹣1,0),(3,0),∴对称轴是x=1,
∴.∴b+2a=0.故命题①错误.
②∵a>0,,∴b<0.
又c<0,∴abc>0.故命题②错误.
③∵b+2a=0,∴a﹣2b+4c=a+2b﹣4b+4c=﹣4b+4c.
∵a﹣b+c=0,∴4a﹣4b+4c=0.∴﹣4b+4c=﹣4a.
∵a>0,∴a﹣2b+4c=﹣4b+4c=﹣4a<0.故命题③正确.
④根据图示知,当x=4时,y>0,∴16a+4b+c>0.
由①知,b=﹣2a,∴8a+c>0.故命题④正确.
∴正确的命题为:①③三个.
故选B
科目:初中数学 来源: 题型:
【题目】某中学开展黄梅戏演唱比赛,组委会将本次比赛的成绩(单位:分)进行整理,并绘制成如下频数分布表和频数分布直方图(不完整).
请你根据图表提供的信息,解答下列问题:
(1)求出a,b的值并补全频数分布直方图.
(2)将此次比赛成绩分为三组:A.50≤x<60;B.60≤x<80;C.80≤x≤100.若按照这样的分组方式绘制扇形统计图,则其中C组所在扇形的圆心角的度数是多少?
(3)学校准备从不低于90分的参赛选手中任选2人参加市级黄梅戏演唱比赛,求都取得了95分的小欣和小怡同时被选上的概率.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】若二次函数的图象与轴分别交于点、,且过点.
(1)求二次函数表达式;
(2)若点为抛物线上第一象限内的点,且,求点的坐标;
(3)在抛物线上(下方)是否存在点,使?若存在,求出点到轴的距离;若不存在,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】在平面直角坐标系中,、为平面内不重合的两个点,若到、两点的距离相等,则称点是线段的“似中点”.
(1)已知,, 在点、、、中,线段的“似中点”是点 .
(2)直线与轴交于点,与轴交于点.
①若点是线段的“似中点”,且在坐标轴.上,求点的坐标;
②若的半径为2,圆心为,若上存在线段的“似中点”,请直接写出的取值范围.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,的内接四边形中为直径,,是的切线,交的延长线于点.
(1)如图(1)求证:;
(2)如图(2)点在弧上,连接分别交、于点、,且,求证:;
(3)如图(3)在(2)的条件下,连接分别交、于点、,,垂足为,是上一点,连接,已知,,,求的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】甲、乙两车分别从A,B两地同时出发相向而行.并以各自的速度匀速行驶,甲车途径C地时休息一小时,然后按原速度继续前进到达B地;乙车从B地直接到达A地,如图是甲、乙两车和B地的距离y(千米)与甲车出发时间x(小时)的函数图象.
(1)直接写出a,m,n的值;
(2)求出甲车与B地的距离y(千米)与甲车出发时间x(小时)的函数关系式(写出自变量x的取值范围);
(3)当两车相距120千米时,乙车行驶了多长时间?
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】某中学课外兴趣活动小组准备围建一个矩形苗圃园,其中一边靠墙,另外三边由长为30米的篱笆围成.已知墙长为18米(如图所示),设这个苗圃园垂直于墙的一边长为x米.
(1)若苗圃园的面积为72平方米,求x;
(2)若平行于墙的一边长不小于8米,这个苗圃园的面积有最大值和最小值吗?如果有,求出最大值和最小值;如果没有,请说明理由.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,已知E,F分别为正方形ABCD的边AB,BC的中点,AF与DE交于点M.则下列结论:①∠AME=90°,②∠BAF=∠EDB,③AM=MF,④ME+MF=MB.其中正确结论的有( )
A.4个B.3个C.2个D.1个
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,将△ABC沿BC边上的中线AD平移到△A'B'C'的位置,已知△ABC的面积为9,阴影部分三角形的面积为4.若AA'=1,则A'D等于( )
A. 2 B. 3 C. D.
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com