【题目】某中学开展黄梅戏演唱比赛,组委会将本次比赛的成绩(单位:分)进行整理,并绘制成如下频数分布表和频数分布直方图(不完整).
请你根据图表提供的信息,解答下列问题:
(1)求出a,b的值并补全频数分布直方图.
(2)将此次比赛成绩分为三组:A.50≤x<60;B.60≤x<80;C.80≤x≤100.若按照这样的分组方式绘制扇形统计图,则其中C组所在扇形的圆心角的度数是多少?
(3)学校准备从不低于90分的参赛选手中任选2人参加市级黄梅戏演唱比赛,求都取得了95分的小欣和小怡同时被选上的概率.
【答案】(1)a=8,b=0.08,图形见解析;(2)144°;(3).
【解析】
(1)根据频数分布图中每一组内的频数总和等于总数据个数,得到总人数,再计算出a的值;根据频率=频数÷数据总数计算b的值;根据a补全直方图;
(2)根据圆心角为:360°乘以百分比进行计算即可;
(3)画出树状图,根据概率公式进行计算即可.
(1)a=50×0.16=8,b==0.08
补全频数分布直方图如右:
(2)360°×(0.32+0.08)=144°
故C组所在扇形的圆心角的度数为144°.
(3)由题意知,不低于90分的学生共有4人,设这四名学生分别为M,X,A,B,其中小欣和小怡分别用A,B表示,根据题意,画树状图如下:
由树状图可知,共有12种等可能的结果,其中小欣和小怡同时被选上的结果有2种,故小欣和小怡同时被选上的概率是
科目:初中数学 来源: 题型:
【题目】如图,已知AB是⊙O的直径,点C、D在⊙O上,∠D=60°,且AB=6,过O点作OE⊥AC,垂足为E.
(1)求OE的长;
(2)若OE的延长线交⊙O于点F,求弦AF、AC和弧CF围成的图形(阴影部分)的面积.(结果精确到0.01)
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线y=ax2+bx+c(a≠0)的对称轴为直线x=-2,与x轴的一个交点在(-3,0)和(-4,0)之间,其部分图象如图所示.则下列结论:①4a-b=0;②c<0;③-3a+c>0;④4a-2b>at2+bt(t为实数);⑤点,,是该抛物线上的点,则y1<y2<y3.其中正确结论的个数是( )
A.4B.3C.2D.1
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图1,抛物线y=x2﹣3与x轴交于AB两点(点A在点B的右侧),与y轴交于点C,连接AC.点Q是线段AC上的动点,过Q作直线l∥x轴,直线1与∠BAC的平分线交于点M,与∠CAx的平分线交于点N.
(1)P是直线AC下方抛物线上一动点,连接PA,PC,当△PAC的面积最大时,求PQ+AM的最小值;
(2)如图2,连接MC,NC,当四边形AMCN为矩形时,将△AMN沿着直线AC平移得到△A'M'N',边A'M'所在的直线与y轴交于D点,若△DM'N'为等腰三角形时,求OD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,点E是矩形ABCD的边AB的中点,点F是边CD上一点,连接ED,EF,ED平分∠AEF,过点D作DG⊥EF于点M,交BC于点G,连接GE,GF,若FG∥DE,则 的值是( )
A.B.C.D.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,在△ABC中,∠C=90°,点O为BC上一点,以点O为圆心、OB的长为半径作圆,交BC于点F,交AB于点D,过点D作⊙O的切线,交AC于点E.
(1)求证:AE=DE;
(2)若,CF=2,BF=10,求AD的长.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】草莓是种老少皆宜的食品,深受市民欢迎.今年3月份,甲,乙两超市分别用3000元以相同的进价购进质量相同的草莓.甲超市销售方案是:将草莓按大小分类包装销售,其中大草莓400千克,以进价的2倍价格销售,剩下的小草莓以高于进价的10%销售.乙超市销售方案是:不将草莓按大小分类,直接包装销售,价格按甲超市大、小两种草莓售价的平均数定价.若两超市将草莓全部售完,其中甲超市获利2100元(其他成本不计).
(1)草莓进价为每千克多少元?
(2)乙超市获利多少元?并比较哪种销售方式更合算.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】如图,抛物线与轴交于、两点(点在点的左侧),点的坐标为,与轴交于点,作直线.动点在轴上运动,过点作轴,交抛物线于点,交直线于点,设点的横坐标为.
(1)直接写出抛物线的解析式__________和直线的解析式_________;
(2)当点在线段上运动时,直接写出线段长度的最大值_________;
(3)当点在线段上运动时,若是以为腰的等腰直角三角形时,求的值;
(4)当以、、、为顶点的四边形是平行四边形时,求出的值.
查看答案和解析>>
科目:初中数学 来源: 题型:
【题目】已知二次函数y=ax2+bx+c的图象如图所示,它与x轴的两个交点分别为(﹣1,0),(3,0).对于下列命题:①b﹣2a=0;②abc<0;③a﹣2b+4c<0;④8a+c>0.其中正确的有( )
A.3个B.2个C.1个D.0个
查看答案和解析>>
湖北省互联网违法和不良信息举报平台 | 网上有害信息举报专区 | 电信诈骗举报专区 | 涉历史虚无主义有害信息举报专区 | 涉企侵权举报专区
违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com